JAL’s status of RNP AR APCH in Japan

Nobumichi Akagi
Flight Operations Standard,
Japan Airlines (JAL)
16TH OCTOBER, 2012

SESSION 3: PBN IMPLEMENTATION
Outline

- FY12 RNP Implementation Status in Japan
- Environment
- Experiences
- Traces of RNP AR Approaches
- The Effect of the Implementation of RNP AR Approach
- Issues in the Future
- Summary
FY12 RNP Implementation Status in Japan

- RNAV approach @ 14 APTs
- RNP approach @ 12 APTs
- RNP AR approach @ 9 APTs
- RNAV1 SID/STAR @ 26 APTs
- Basic RNP1 SID/STAR @ 13 APTs
- * Planned APT in FY2012
Environment

- JAL Group Started the RNP AR APCH from 03 MAY, 2012
- B737-800
- Operated by JAL and JAL Express (JEX)
- Approved approaches (6)
 - Hakodate RNAV (RNP) Z RWY 30
 - Haneda RNAV (RNP) RWY 23
 - Kochi RNAV (RNP) Z RWY 14
 - Kochi RNAV (RNP) Y RWY 14
 - Kitakyushu RNAV (RNP) RWY 18
 - Kitakyushu RNAV (RNP) RWY 36
Experiences

- **Number of Trained Flight Crew (as of 30 SEP, 2012)**

<table>
<thead>
<tr>
<th></th>
<th>JAL</th>
<th>JEX</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captain</td>
<td>69 (86.3%)</td>
<td>141 (95.3%)</td>
<td>210 (92.1%)</td>
</tr>
<tr>
<td>First Officer</td>
<td>59 (100%)</td>
<td>124 (95.4%)</td>
<td>183 (96.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>128 (92.1%)</td>
<td>265 (95.3%)</td>
<td>393 (94.2%)</td>
</tr>
</tbody>
</table>

- **Experiences (as of 21 SEP, 2012 total 181 approaches)**

<table>
<thead>
<tr>
<th>Airport</th>
<th>Approach</th>
<th>Number of Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hakodate</td>
<td>RNAV (RNP) RWY 30</td>
<td>1</td>
</tr>
<tr>
<td>Haneda</td>
<td>RNAV (RNP) RWY 23</td>
<td>0</td>
</tr>
<tr>
<td>Kochi</td>
<td>RNAV (RNP) Z RWY 14</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>RNAV (RNP) Y RWY 14</td>
<td>11</td>
</tr>
<tr>
<td>Kitakyushu</td>
<td>RNAV (RNP) RWY 18</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>RNAV (RNP) RWY 36</td>
<td>53</td>
</tr>
</tbody>
</table>
Traces of RNP AR Approaches (1)
Hakodate RNAV (RNP) RWY 30

RNP AR APCH
Track Time: 560 sec.
Track Mile: 26.61 nm
Burn-off Fuel: 463.782 lbs

RNAV APCH
Track Time: 618 sec.
Track Mile: 28.98 nm
Burn-off Fuel: 685.249 lbs
Traces of RNP AR Approaches (2)
Kochi RNAV (RNP) Y/Z RWY 14

RNP AR APCH (Z)
- Track Time: 526 sec.
- Track Mile: 23.83 nm
- Burn-off Fuel: 580.809 lbs

Visual APCH
- Track Time: 374 sec.
- Track Mile: 16.03 nm
- Burn-off Fuel: 490.520 lbs

RNP AR APCH (Y)
- Track Time: 535 sec.
- Track Mile: 23.97 nm
- Burn-off Fuel: 543.476 lbs
Traces of RNP AR Approaches (3)
Kitakyushu RNAV (RNP) RWY 18

- **RNP AR APCH**
 - Track Time: 331 sec.
 - Track Mile: 12.07 nm
 - Burn-off Fuel: 338.209 lbs

- **ILS APCH**
 - Track Time: 764 sec.
 - Track Mile: 36.55 nm
 - Burn-off Fuel: 807.196 lbs

- **Visual APCH**
 - Track Time: 296 sec.
 - Track Mile: 12.49 nm
 - Burn-off Fuel: 293.596 lbs
Traces of RNP AR Approaches (4)

Kitakyushu RNAV (RNP) RWY 36

Visual APCH
- Track Time: 349 sec.
- Track Mile: 14.65 nm
- Burn-off Fuel: 332.511 lbs

RNP AR APCH
- Track Time: 321 sec.
- Track Mile: 13.48 nm
- Burn-off Fuel: 336.951 lbs
The Effect of the Implementation of RNP AR Approach (1)

改善的最低标准

<table>
<thead>
<tr>
<th>机场</th>
<th>跑道</th>
<th>途径</th>
<th>DH(MDH) / RVR (ft / m)</th>
<th>比较</th>
</tr>
</thead>
<tbody>
<tr>
<td>岩手</td>
<td>30</td>
<td>RNAV</td>
<td>418 / 1000</td>
<td>降低最低标准 DH: - 47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNP AR</td>
<td>371 / 1000</td>
<td></td>
</tr>
<tr>
<td>科池</td>
<td>14</td>
<td>ILS Circling</td>
<td>731 / 2400</td>
<td>降低最低标准 DH: - 62, RVR: - 800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNP AR Z</td>
<td>569 / 1600</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNP AR Y</td>
<td>569 / 1600</td>
<td></td>
</tr>
<tr>
<td>久留米</td>
<td>18</td>
<td>VOR</td>
<td>479 / 1200</td>
<td>对比 VOR: 降低最低标准 DH: - 179, RVR: - 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNP AR</td>
<td>300 / 1000</td>
<td>vs ILS: 减少转弯线</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ILS</td>
<td>200 / 550</td>
<td></td>
</tr>
<tr>
<td>久留米</td>
<td>36</td>
<td>ILS Circling/VOR</td>
<td>479 / 2400</td>
<td>降低最低标准 DH: - 173, RVR: - 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNP AR</td>
<td>306 / 1400</td>
<td></td>
</tr>
</tbody>
</table>
Improvement of Track Mile and Burn-off Fuel

<table>
<thead>
<tr>
<th>Airport</th>
<th>Approach</th>
<th>Track Time (sec.)</th>
<th>Track Mile (nm)</th>
<th>Burn-off Fuel (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hakodate</td>
<td>RNAV</td>
<td>- 58</td>
<td>- 2.4</td>
<td>- 221.5</td>
</tr>
<tr>
<td>RWY 30</td>
<td>RNP AR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitakyushu</td>
<td>ILS</td>
<td>- 433</td>
<td>- 24.5</td>
<td>- 469.0</td>
</tr>
<tr>
<td>RWY 18</td>
<td>RNP AR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitakyushu</td>
<td>Visual</td>
<td>- 28</td>
<td>- 1.2</td>
<td>4.4</td>
</tr>
<tr>
<td>RWY 36</td>
<td>RNP AR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Effect of the Implementation of RNP AR Approach (3)

- Improvement of Trace for the Route

Trails of Conventional APCH
60 FLT

Trails of RNP AR APCH
53 FLT

This achieves to avoid the routing above the noise sensitive area.
Issues in the Future

- Expand the RNP AR Approved Ship Type
 - B777:
 - Lack of LNAV Auto Engagement during Go-around
 - B787:
 - RNP AR APCH is not implemented in current destination (BOS/DEL/DME/SIN)

- Lack of the Information about the System of World Wide Authorities
 - Process of the Application
 - FOSA
 - How to reflect the RNP AR APCH for Operations Specifications

- Early Flap Extension induces the Increasing of the Burn-off Fuel

PBN Symposium 2012
Summary

- FY12 RNP Implementation Status in Japan
- Environment and Experiences of the JAL Group’s RNP AR APCH
- Show the Trails of RNP AR APCH in Japan
- Effect of the Implementation of RNP AR Approach
 - Decreasing Minima
 - Decreasing Track Mile/Burn-off Fuel
 - Minimize the noise for noise sensitive area
- Issues in the Future
 - Expanding the aircraft type and fly into countries
Thank you for your kind attention.