Content

A. Summary of Key Takeaways from Analyses

B. Analysis of Route-Based Approach

C. Exploration of Data for Accumulative Emissions Approach

D. Comparison of Schemes

Note: This summary paper is supplemented by an Appendix that presents additional supporting material to the preliminary results of the technical analyses.
Global Emissions from International Aviation

- International aviation CO$_2$ emissions between 2010 - 2040.

<table>
<thead>
<tr>
<th>International Aviation CO$_2$ Emissions (in Million tonnes)</th>
<th>2010</th>
<th>2018-2020</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Optimistic Scenario</td>
<td>438</td>
<td>671</td>
<td>704</td>
<td>879</td>
<td>1,048</td>
<td>1,270</td>
<td>1,491</td>
</tr>
<tr>
<td>Optimistic Scenario</td>
<td>438</td>
<td>656</td>
<td>686</td>
<td>828</td>
<td>945</td>
<td>1,101</td>
<td>1,249</td>
</tr>
</tbody>
</table>
CO₂ Emissions to be Offset

- Final quantity to offset after adjustments

<table>
<thead>
<tr>
<th>Final Quantity to Offset after adjustments (in Million tonnes of CO₂ emissions)</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Optimistic Scenario</td>
<td>-</td>
<td>174</td>
<td>376</td>
<td>596</td>
<td>816</td>
</tr>
<tr>
<td>Optimistic Scenario</td>
<td>-</td>
<td>142</td>
<td>288</td>
<td>443</td>
<td>590</td>
</tr>
</tbody>
</table>
Assumptions on unit carbon price are driving significant uncertainty in total cost impacts of offsetting CO₂ emissions from international aviation.

IEA WEO 2013 carbon price paths reflect allowance prices only.

The alternative low carbon price path takes into account a larger pool of emissions units with lower abatement costs.

* New case with alternative low carbon price
Alternative Cost Metrics i.e., Cost as Percent of Total Revenue

- CAEP computed relative cost to offset emissions from international aviation as percent of total revenue (based on ICAO and IATA forecasts).

A. Summary of Key Takeaways from Analyses

<table>
<thead>
<tr>
<th>Revenue Forecast in 2012$</th>
<th>ICAO</th>
<th>IATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>716 $B</td>
<td>579 $B</td>
</tr>
<tr>
<td>2025</td>
<td>864 $B</td>
<td>734 $B</td>
</tr>
<tr>
<td>2030</td>
<td>1,090 $B</td>
<td>917 $B</td>
</tr>
<tr>
<td>2035</td>
<td>1,330 $B</td>
<td>1,140 $B</td>
</tr>
</tbody>
</table>

Note: ICAO and IATA Revenue Forecasts compared to Optimistic CO$_2$ Scenario (A38-WP/26 Scenario 9)
A. Summary of Key Takeaways from Analyses

Framework Illustrating Decisions on Offset Obligation Distribution Scheme

Exemptions
Removed from the Scope
- Humanitarian, firefighting, medical
- MTOM < 5700kg and/or Operator CO₂ Emissions < 10,000 t

Operator Level Adjustments
- GMBM Scheme for Distributing Offsets
 - Allocate adjustments from reserve

Flight Purpose Level
- Early Movers (Strawman or Alternative) Adjustment
 - and/or Fast Grower Adjustment

Route Level
- Operator Level Adjustments
- Operator Level Distribution/Adjustments
- Route Distribution/Adjustments*
 - Route States de minimis (LES, or others)
 - Route-based state Exemptions

Operator Distribution*
- Choose one of:
 - 100% individual
 - 50% individual/
 - 50% sectoral
 - -100% sectoral
 - Dynamic (100% Sect to 100% Indiv)
 - Accumulative

Legend:
- Operator Level
- Route Level
- Aircraft Level

*Other approaches possible. Chart reflects approaches specifically tasked by EAG
A. Summary of Key Takeaways from Analyses

Exemptions

Removed from the Scope

- Humanitarian, firefighting, medical
- MTOM < 5700kg
 and/or
- Operator CO₂ Emissions < 10,000 t
- New Entrant

Type of Scheme

Humanitarian /emergency Exemption

Offset

Operator CO₂ Emissions < 10,000 t

Technical Exemption

New Entrants Exemption

Legend:
- Operator Level
- Flight Purpose Level
- Route Level
- Aircraft Level

*Other approaches possible. Chart reflects approaches specifically tasked by EAG
Exemptions

- Data from 2010, shows that operators emitting less than 10,000 tonnes of CO₂ per year accounted for 0.24%, though this could increase up to 3.1% as 2.9% of emissions likely from small emitters were not able to be attributed to specific operators.

- CO₂ emissions from aircraft with MTOM < 5,700 kg represented approximately 0.007% of total CO₂ emissions from international aviation.

- A study by IATA of the contribution of new entrants, based on historical data concluded that new entrants on average represent 3% of total CO₂ emissions. CAEP expects that the contribution of new entrants may be less important than observed in the IATA study.
Exemptions of Routes to and from Lowest Emissions States (LES)

Legend:
- Operator Level
- Flight Purpose Level
- Route Level
- Aircraft Level

*Other approaches possible. Chart reflects approaches specifically tasked by EAG
Exemptions of Routes to and from Lowest Emissions States (LES)

- The Strawman proposes to exempt flights to and from Lowest Emissions States (LES).
- CAEP estimated in 2020 exempting CO$_2$ emissions from flights to and from 97 of ICAO’s States with the lowest emissions levels (from all arriving and departing international flights) would exempt approx. 5% of CO$_2$ emissions. Exemption of 117 and 129 LES would exempt approx. 10% and 15% of CO$_2$ emissions respectively.
- The ranking of State by international aviation emission levels is provided on the next slide. This list could be updated over time to reflect changes in the market for international civil aviation.
A. Summary of Key Takeaways from Analyses

Illustration: List of States in 2010

Ranked by increasing CO₂ emissions (from all international flights to and from individual States) with exemption thresholds

<table>
<thead>
<tr>
<th>ICAO State Name</th>
<th>% CO₂ Em.</th>
<th>Cumulative CO₂ Em.</th>
<th>ICAO State Name</th>
<th>% CO₂ Em.</th>
<th>Cumulative CO₂ Em.</th>
<th>ICAO State Name</th>
<th>% CO₂ Em.</th>
<th>Cumulative CO₂ Em.</th>
<th>ICAO State Name</th>
<th>% CO₂ Em.</th>
<th>Cumulative CO₂ Em.</th>
<th>ICAO State Name</th>
<th>% CO₂ Em.</th>
<th>Cumulative CO₂ Em.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAURU</td>
<td>0.003%</td>
<td>0.003%</td>
<td>LESOTHO</td>
<td>0.01%</td>
<td>0.02%</td>
<td>SWAZILAND</td>
<td>0.01%</td>
<td>0.02%</td>
<td>BHUTAN</td>
<td>0.01%</td>
<td>0.03%</td>
<td>GUINEA-BISSAU</td>
<td>0.02%</td>
<td>0.05%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>0.01%</td>
<td>0.02%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.01%</td>
<td>0.02%</td>
<td></td>
<td>0.02%</td>
<td>0.05%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02%</td>
<td>0.02%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.05%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02%</td>
<td>0.02%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.05%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02%</td>
<td>0.02%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.05%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02%</td>
<td>0.02%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.05%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02%</td>
<td>0.02%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.05%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02%</td>
<td>0.02%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.05%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02%</td>
<td>0.02%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.03%</td>
<td></td>
<td>0.02%</td>
<td>0.05%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19 January 2016
A. Summary of Key Takeaways from Analyses

Offset Obligation Distribution Schemes

Legend:
- Operator Level
- Flight Purpose Level
- Route Level
- Aircraft Level

*Other approaches possible. Chart reflects approaches specifically tasked by EAG
Offset Obligation Distribution Schemes

• Trends in Share of CO₂ Emissions to Offset for Various Allocation Schemes capture potential cost impacts on various types of operators

A. Summary of Key Takeaways from Analyses
CAEP has also evaluated route based approaches including: (1) gradual phase in of State pair routes where a fraction of the CO$_2$ emissions is temporarily exempted in the earlier years of implementation.

- CO$_2$ emissions coverage could range from 88% to 99% across various metrics and phase-in attribution profiles investigated.
- It was observed that the distribution of offset obligations is primarily driven by the choice of the operator allocation method (e.g. Basic Calculation %).
- The route based approach provides an additional adjustment by decreasing the share of emissions to offset for certain operators.
- Two alternative route based proposals were also identified.
A. Summary of Key Takeaways from Analyses

Redistribution

• Adding redistribution to a route based approach to improve performance against the global goal is feasible.

• Redistribution (1) may add complexity to the process for computing offsets and (2) may add uncertainty to the final quantities to offset.
A. Summary of Key Takeaways from Analyses

Operator Level Adjustments

GMBM Scheme for Distributing Offsets

Allocate adjustments from reserve?

no

yes

no

Operator Level Adjustments

Allocate adjustments from reserve

Early Movers (Strawman or Alternative) Adjustment

and/or

Fast Grower Adjustment

Operator Level Adjustments

Legend:

- Operator Level
- Flight Purpose Level
- Route Level
- Aircraft Level

*Other approaches possible. Chart reflects approaches specifically tasked by EAG
A. Summary of Key Takeaways from Analyses

Operator Level Adjustments

- **Fast Grower** adjustments are allocated from the “reserve”, i.e. the greater of the difference of the reference period emissions level and 2020 emissions or 3% of the total 2020 CO$_2$ emissions from international aviation.

- Adjustments from the reserve do not impact the achievement of the CNG 2020 goal.

- **Fast Growers** are operators whose individual emissions’ growth rates is more than twice the average growth rate as depicted in page 14 by the kink in the lines above approx. 5% annual growth rate in CO$_2$ emissions.
• **Early Mover** adjustments could be provided to operators whose individual fuel efficiency is more than 10% above the average fuel efficiency in the reference year (eligible from 2021 to 2025). ASG observed that EM adjustments are primarily assigned to operators conducting freight (only) operations.

• An analysis of an alternative Early Mover proposal submitted by IATA to EAG was also conducted. In addition to rewarding efficiency above average, the IATA proposal aims at recognizing efforts to improve efficiency at a rate greater than the average rate of improvement.

• The analysis showed that while more operators would qualify under the alternative approach, the average adjustment would be lower and the variation between operators less important than under the approach proposed in the Strawman.

• IATA proposed to not allocate the early mover adjustment from the reserve, this would impact the achievement of the global goal.
B. Analysis of Route-Based Approach

Tasks:

- Analyze alternative sequence of Lowest Emissions States, Operator Exemptions and Route Based Approach;
 - Separate LES Exemptions from the RBA/Phase In (i.e., Group D States) and apply the LES as an upstream step in the process for computing offset obligations (similar to Strawman implementation).

- Complete sensitivity of key results to changes to the threshold for the groups specified in WP/1 for each metric.

- Complete assessment of whether metrics and thresholds generate an incentive to reroute flights.

Status:

- Analytical Tasks Complete to the Best of CAEP’s Ability

For details and analyses in support of this section, see Appendix, pages 3-5
The effects of sequences of (1) LES, (2) Operator Level Exemptions and (3) Route Based Approach were discussed during the EAG/14 meeting.

It was proposed that the LES exemptions could be extracted from the RBA Phase In (i.e., Group D States).

CAEP developed an alternative model and implementation of Route Based Approach with Phase In, where;

- (1) LES are applied upstream (similar to Strawman),
- (2) Operator level exemptions i.e., 10,000tCO$_2$ are then applied,
- (3) Route Based Approach Phase In for Groups of States A, B and C—without group D—are applied downstream as an adjustment (similar to EAG/12 analyses)
CAEP showed that an upstream application of LES and downstream application of RBA/Phase In is feasible.

This approach results in an isolated effect of RBA/Phase In i.e., reductions in offset obligations solely due to RBA/Phase In.

For sample illustrative metric/phase in profile, offset obligations are reduced on average by 5%. Maximum reduction reached 20% for some operators.

Results of Prior Analyses (EAG/13-14)

Results of EAG/15 Analyses
B. Analysis of Route-Based Approach

Tasks:

• Analyze alternative sequence of Lowest Emissions States, Operator Exemptions and Route Based Approach;
 – Separate LES Exemptions from the RBA/Phase In (i.e., Group D States) and apply the LES as an upstream step in the process for computing offset obligations (similar to Strawman implementation).

• Complete sensitivity of key results to changes to the threshold for the groups specified in WP/1 for each metric.

• Complete assessment of whether metrics and thresholds generate an incentive to reroute flights.

Status:

- Analytical Tasks Complete to the Best of CAEP’s Ability

For details and analyses in support of this section, see Appendix, pages 6-22
B. Analysis of Route-Based Approach

Sensitivity of Key Results to Changes to the Threshold for the Groups Specified in WP/1 for Each Metric

- Using Route Based Approach with Phase In approach as described in EAG/11-WP/1, CAEP conducted an analysis of the sensitivity of thresholds for defining groups of States i.e., Groups A, B, C and D.

- Thresholds were varied to (1) **Less Inclusive** scenario, (2) **More Inclusive** Scenario from the Baseline case that was presented at EAG/12.

- See Appendix for results for all metrics and threshold values.
B. Analysis of Route-Based Approach

Illustration: Metric #1 CO₂ and GNI/Cap

Note: GNI/Cap. based on Atlas Method

<table>
<thead>
<tr>
<th>ICAO Member State</th>
<th>Less Inclusive</th>
<th>Baseline</th>
<th>More Inclusive</th>
<th>ICAO Member State</th>
<th>Less Inclusive</th>
<th>Baseline</th>
<th>More Inclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIGUA AND BARBUDA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>MALDIVES</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>SYRIAN ARAB REPUBLIC</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>AUSTRIA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>AFGHANISTAN</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>BAHRAIN</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>NEPAL</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>BANGLADESH</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>TAJIKISTAN</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>BOLIVIA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>UZBEKISTAN</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>BOSNIA AND HERZEGOVINA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>VATICAN CITY</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>BOTSWANA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>VENEZUELA</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>VIET NAM</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>BRUNEI</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>ZAMBIA</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>BURKINA FASO</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>ZIMBABWE</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>BURUNDI</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMEROON</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPE VERDE</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENTRAL AFRICAN REPUBLIC</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAD</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMOROS</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOK ISLANDS</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTA RICA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUBA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYPRUS</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENMARK</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJIBOUTI</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOMINICAN REPUBLIC</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOMINICA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRC</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGYPT</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUATORIAL GUINEA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTONIA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHIOPIA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EÚRCU</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMIRATES</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGLAND</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUATORIAL GUINEA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EÚRCU</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EÚRCU</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19 January 2016
Illustration: Metric #1 CO$_2$ and GNI/Cap

Baseline Scenario

Less Inclusive Scenario

More Inclusive Scenario

Legend:
- Group A
- Group B
- Group C
- Group D
B. Analysis of Route-Based Approach

Sensitivity of Key Results to Changes to the Threshold for the Groups Specified in WP/1 for Each Metric

- Changes in threshold values to determine groups of States generally has marginal influence on total CO₂ Emissions covered by the GMBM.
- Influence depends on metric (i.e., State rankings) and whether some large emitting States cross the thresholds.
- All operators (aggregated by their State of registration) experience a decrease/increase of offset obligations from the baseline case that can range from at most -11% to 14%.

CO₂ Emissions Covered by the GMBM after RBA/Phase In
for various Metrics and Grouping Thresholds

![Bar chart showing CO₂ emissions covered by the GMBM for different metrics and grouping thresholds.](chart.png)
B. Analysis of Route-Based Approach

Tasks:

• Analyze alternative sequence of Lowest Emissions States, Operator Exemptions and Route Based Approach;
 – Separate LES Exemptions from the RBA/Phase In (i.e., Group D States) and apply the LES as an upstream step in the process for computing offset obligations (similar to Strawman implementation).

• Complete sensitivity of key results to changes to the threshold for the groups specified in WP/1 for each metric.

• Complete assessment of whether metrics and thresholds generate an incentive to reroute flights.

Status:
- Analytical Tasks Complete to the Best of CAEP’s Ability
B. Analysis of Route-Based Approach

Effects of Metrics and Thresholds on Incentive to Reroute Flights

- Route Based Approach with Phase In generally results in lower differences in relative costs* than some operator based approaches such as 100% individual or accumulative approach.
- As such, incentives to reroute flights from RBA/Phase In metrics and thresholds cannot be assessed in isolation but needs to consider the operator based scheme on which the RBA/Phase In is applied.
- See comprehensive assessment of market distortion in section D for results.

* For the purpose of the GMBM analyses, market distortion is measured solely by the difference in costs resulting from the GMBM offsets between two operators or across routes. It excludes considerations of existing market distortion due to other cost items, regulations, regional differences.
C. Exploration of Data for Accumulative Emissions Approach

Tasks:

- Further explore data for accumulative approach with alternative sources of data;
 - Summarize characteristics of historical databases investigated by CAEP to date.

Status:

- Analytical Tasks Complete to the Best of CAEP’s Ability
To provide a summary of characteristics of historical database, CAEP reviewed analyses of databases investigated to date.

Captured the source and type of data, scope of coverage of databases and availability of historical data.
C. Exploration of Data for Accumulative Emissions Approach

Summary of Characteristics of Historical Databases Investigated by CAEP to Date

<table>
<thead>
<tr>
<th>Source</th>
<th>ICAO Form A</th>
<th>ICAO Form C</th>
<th>ICAO Form M</th>
<th>COD</th>
<th>OAG</th>
<th>U.S. BTS Form 41</th>
<th>IEA Fuel Sales Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operators</td>
<td>Operators</td>
<td>Operators</td>
<td>Radar tracking system + published OAG schedules</td>
<td>Operators</td>
<td>Fuel Suppliers</td>
<td>Operators</td>
<td>Fuel Suppliers</td>
</tr>
<tr>
<td>Type of Data</td>
<td>RTK at operator level</td>
<td>RTK at operator-route level</td>
<td>Flight Origin-Destination translated into fuel burn estimations using simulation models</td>
<td>Flight Origin-Destination translated into fuel burn estimations using simulation models</td>
<td>Fuel (purchases and uplift depending on database form).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope of Coverage</td>
<td>Data for approx. 90 to 115 States.</td>
<td>Half of expected data/routes missing in 2010</td>
<td>Low reporting of fuel burn by States</td>
<td>North America and Europe covered by radar data, rest of the world based on published schedules. Rest of world does not include cargo operations.</td>
<td>Published schedules worldwide. Does not include cargo operations.</td>
<td>U.S. carriers only</td>
<td>Deliveries of aviation fuels to aircraft for international aviation</td>
</tr>
</tbody>
</table>
D. Comparison of Schemes

Tasks:

- Continue to analyze potential market distortion across schemes for distributing offset obligations.
- Complete the assessment of complexity of the schemes (illustrate and assess complexity against other dimensions of complexity e.g., monitoring/data collection, reporting/data sharing, computational, mitigation of missing data/reports, cost from MRV).
- Summary of Comparison of Schemes

Status:

- Analytical Tasks Complete to the Best of CAEP’s Ability

For details and analyses in support of this section, see Appendix, pages 24-37
Potential Market Distortion across Schemes for Distributing Offset Obligations: Approach

• CAEP used a multi-faceted approach to assess potential market distortion across schemes for distributing offset obligations;
 – (1) Computed and compared cost of offsets relative to fuel costs across all routes in the global international aviation network modelled (i.e., approx. 29,000 combinations of operators and State to State routes),
 – (2) Assessed and compared absolute cost of offsets vs. operating costs for sample markets,
 – (3) Conducted qualitative assessment/narrative for sample representative markets.
Summary of Observations on Potential Market Distortion

Effect of Distribution Schemes:

• Minimum difference in relative cost due to offsets across routes is achieved with 100% sectoral (all routes see the same impacts),

• Largest spread/differences in cost due to offsets observed for 100% individual and Accumulative Approach,

• The extent of market distortion is limited and directly related to the price of the offset
Summary of Observations on Potential Market Distortion

Impact on Specific Routes

- Cost differentiation amongst the different offsetting scheme on a route ranges from*
 - 0% to 4.2%** of fuel costs in 2025 at high offset price (1.2%** at low offset price)
 - 0% to 11.8%** in 2035 at high offset price (3.5%** at low offset price),
- Analysis shows that there are inequalities, but that the effects on the ticket prices are small (max ± 50 US$ for a business and ± 10 US$ for an economy ticket),
- The impact of the market distortion is relative to distance between the markets,
- Based on analyses of sample markets, difference in cost increase between two markets is expected to be on the order of a few dollars, which may not result in incentives for switching destinations.

* Percentage are expressed as offset cost versus fuel cost. Unit fuel cost: 3$/Gallon, Unit cost of Carbon 2025 (Low: 8, High: 27) 2035 (Low: 12, High: 40) **Differentiation and final percentage depends of the operator growth
D. Comparison of Schemes

Summary of Observations on Potential Market Distortion (cont.)

Effect of Route Based Approach (RBA) / Phase In

• Observed incremental effect of RBA/Phase In that results in reduction in offset obligations on partially exempted routes.

• Differentiation from Route Based Approach with Phase In can create a difference in cost between two passenger/cargo flow markets (same origins and destinations but connecting through different States).
Summary of Observations on Potential Market Distortion (cont.)

D. Comparison of Schemes

Effect of Least Emissions State (LES) Exemptions

• Market distortion can be introduced as a results of the fact that (1) the GMBM applies only for international aviation and (2) flights to and from the LES can be exempted,

Effect of New Entrant Exemptions

• Similar to other adjustments/exemptions, New Entrant exemptions will create difference in costs (especially for schemes involving 100% sectoral approach).
D. Comparison of Schemes

Tasks:

- Continue to analyze potential market distortion across schemes for distributing offset obligations.
- Complete the assessment of complexity of the schemes (illustrate and assess complexity against other dimensions of complexity e.g., monitoring/data collection, reporting/data sharing, computational, mitigation of missing data/reports, cost from MRV).
- Summary of Comparison of Schemes

Status:

- Analytical Tasks Complete to the Best of CAEP’s Ability

For details and analyses in support of this section, see Appendix, pages 38-41
During the EAG/14 meeting, CAEP presented an initial assessment of the relative complexity associated with the process for computing offset obligations. The assessment was extended to other dimensions of complexity, including:

- **Monitoring, Reporting, Verification (MRV)** i.e., minimum data required for computations of offset obligations vs. data expected to be available from GMBM MRV system
- **Data gap filling process**
- **Computational complexity.**
Approach

• Developed a list of processes/actions by stakeholders, including Monitoring, Reporting, Verification and Computation of Offset Obligations.

• For each scheme for distributing offset obligations;
 – Identified types of data required to compute offset obligations,
 – Mapped exchange of data between stakeholders; (1) Operators, (2) States, (3) ICAO/Third Party.
 – Identified potential roles of stakeholders in the computation of obligations.

• Note: It was assumed that ICAO/Third Party computes final offset obligations based on information collected from States and Operators and communicate it back to States (who then communicate it to Operators).
Summary of Assessment of Relative Complexity across Schemes

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Approaches</th>
<th>Basic Calc. (0/100), (50/50), or Dynamic w/o Adjustments w/o LES</th>
<th>Basic Calc. (0/100), (50/50), or Dynamic w/o FG and EM Adjustments w/o LES</th>
<th>Basic Calc. (0/100), (50/50), or Dynamic w/ FG and EM Adjustments w/ LES</th>
<th>累积计算</th>
<th>Basic Calc. (0/100), (50/50), or Dynamic w/o Adjustments w/o LES</th>
<th>Basic Calc. (0/100), (50/50), or Dynamic w/o FG and EM Adjustments w/ LES</th>
<th>Basic Calc. (0/100), (50/50), or Dynamic w/o FG and EM Adjustments w/ LES</th>
<th>Alternative RBA 1: EAG/11: WP/1</th>
<th>Alternative RBA 2: EAG/12 Concept 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operators (MRV)</td>
<td>Minimum Data To Be Reported by Operator to State and ICAO</td>
<td>N/A*</td>
<td>Operator level CO\textsubscript{2} emissions and RTK</td>
<td>Operator level CO\textsubscript{2} emissions and RTK Route level CO\textsubscript{2} Emissions</td>
<td>Operator level CO\textsubscript{2} emissions and RTK Route level CO\textsubscript{2} Emissions</td>
<td>Operator level CO\textsubscript{2} emissions and RTK Route level CO\textsubscript{2} Emissions</td>
<td>Operator level CO\textsubscript{2} emissions and RTK Route level CO\textsubscript{2} Emissions</td>
<td>Operator level CO\textsubscript{2} emissions and RTK Route Level/ Historical CO\textsubscript{2} Emissions</td>
<td>Operator level CO\textsubscript{2} emissions and RTK Route Level/ Historical CO\textsubscript{2} Emissions</td>
<td></td>
</tr>
<tr>
<td>Availability of data from MRV</td>
<td></td>
</tr>
<tr>
<td>Complexity of data collection for the operator</td>
<td>Low</td>
<td>Mid</td>
<td>N/A</td>
<td>Mid</td>
<td>N/A</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of data needed for computations of offsets</td>
<td>0</td>
<td>1600 – 16,000</td>
<td>6500 - 64000</td>
<td>76000 - 290000</td>
<td>78000 - 320000</td>
<td>3200 - 32000</td>
<td>6500 - 64000</td>
<td>78000 - 320000</td>
<td>71000 - 260000</td>
<td>75000 - 290000</td>
</tr>
<tr>
<td>Complexity of data gap filing process</td>
<td>N/A</td>
<td>Low</td>
<td>Mid</td>
<td>High</td>
<td>High</td>
<td>Mid</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Computations of Offsets</td>
<td></td>
</tr>
</tbody>
</table>

No difference in computational complexity across schemes

[CAEP analyses of EAG have shown feasibility of computations for all schemes]

Note: Operator level CO\textsubscript{2} emissions needed to compute offset obligations but no information from other operators needed/shared to compute offset obligations.
Assessment of Complexity of the Schemes:

Observations

- Minimum data required to compute offset obligations are expected to be available from the GMBM MRV system, except for schemes that require historical data.

- Missing data/reports could create complexity. Consequences of missing data correlates with the amount of data required.

- No expected differences in computational complexity across schemes.
D. Comparison of Schemes

Tasks:

- Continue to analyze potential market distortion across schemes for distributing offset obligations.
- Complete the assessment of complexity of the schemes (illustrate and assess complexity against other dimensions of complexity e.g., monitoring/data collection, reporting/data sharing, computational, mitigation of missing data/reports, cost from MRV).

- Summary of Comparison of Schemes
 (see Appendix B for details)

Status:

- Analytical Tasks Complete to the Best of CAEP’s Ability
Conclusions

CAEP completed all analyses requested by EAG