Korea’s Action Plan to Reduce GHG Emissions from International Aviation

Junhaeng Jo

Republic of KOREA
Contents

- Planning Process
- Korea’s International Aviation
- Estimation and Goal
- Reduction Estimation
- Challenges and Response
Planning Process

Planning body

- **Taskforce: government, airlines, airport operators, research institute**
 - Gathering data, communicating amongst members
 - Guiding analysis team
 - Reviewing the process and results

- **Analysis team: consultants**
 - Analyzing data and forecasting
 - Establishing the plan
Planning Process

Schedule & Issue of Meeting

1st Advisory Meeting
Gathering data (Jan 10)

2nd Advisory Meeting
Methodology (Feb 13)

3rd Advisory Meeting
Forecasting (Mar 8)

4th Advisory Meeting
Methodology (Mar 23)

5th Advisory Meeting
Target setting (Apr 12)

6th Advisory Meeting
Methodology (Apr 20)

7th Advisory Meeting
Methodology (Apr 26)

1st Steering Meeting (Jan 30)

2nd Steering Meeting (Feb 28)

Reviewing Meeting (Apr 2)

3rd Steering Meeting (May 8)
Korea’s International Aviation

Geographical and economical characteristics

- **The only international transportation mean for passengers**
 - Korea is like an island, blocked by North Korea from the continent

- **Transport mode for exporting IT and high-tech products**
 - Products having big weight in Korea’s economy

- **Low efficiency of air routes**
 - Large portion of air spaces are reserved for military use
Korea’s International Aviation

World best competitiveness

- **Airlines**
 - Seven airlines; two large airlines and five LCCs
 - Growing based on world best services

- **Airports**
 - Incheon Airport; winning the **World Best Airport Award** for 7 consecutive years

- **Government**
 - Ranked as the **world best** in ICAO Universal Safety Oversight Audit Program (USOAP) in 2008
Korea’s Climate Change Response in Aviation

- **2007;** Consulting for reduction of GHG emissions from aviation

- **2008;** Constitution of Aviation Climate Change Response Group
 - Airlines, airport operators, government, research institutes

- **2009;** Starting Aviation GHG Database

- **2010;** Voluntary agreement on aviation GHG reduction
 - Setting fuel efficiency goals for airlines by consultation
 - Airlines: Submitting action plans to the government
 - Government: awarding Green Airline Prize
Korea’s Climate Change Response in Aviation

- **2011; GHG Target Management**
 - Setting targets for GHG reduction and managing the implementation
 - For large businesses including two large airlines

- **2015; Emission Trading System**
 - Replacing GHG Target Management from 2015
 - For larger businesses, including large airlines (domestic flights only)
Korea’s National Strategy for Low Carbon, Green Growth

- Announced as a National Vision by former administration in 2008

- To move away from brown economy to green economy
 - Mitigation of climate change, GHG emissions
 - Creation of new engines for economic growth in green industry

- National Emission Reduction Target: 30% below BAU by 2020
 - In 2011, GHG Target Management
 - In 2015, Emission Trading System
Estimation and Goal

Estimation of future RTK

- Based on historical data from 1996 to 2010
- RTK will increase 28.8% by 2020 compared with 2010

Y = 590,708,579 * (X - 2010) + 20,542,926,471
Estimation and Goal

Estimation of future GHG emissions

- Based on 2010 fuel efficiency; 0.3137 litter/RTK
Estimation and Goal

Reduction Goal: bottom-up approach

- **Selection of reduction measures**
 - 10 measures selected from out of 34 proposed measures
 - Criteria: reduction potential, measurability

- **Reduction estimation by measure at best condition**
 - Based on consultation with relevant agencies
 - Considering historical performance results and future conditions

- **Summation of estimated reductions by measures**
Estimation and Goal

Reduction Goal

▪ **Improving fuel efficiency 1.3% annually by 2020**
 - Fuel efficiency goal: 0.2752ℓ/RTK in 2020
 * Korea’s fuel efficiency of international aviation: 0.3137ℓ/RTK in 2010

▪ **To reach Korea’s goal, 0.2752ℓ/RTK in 2020**
 - A country with the world’s average fuel efficiency has to improve its efficiency by 3.05% annually
 - Requiring much more efforts beyond ICAO’s 2.0% target
 * World’s average fuel efficiency in 2010: 0.375ℓ/RTK
Estimation and Goal

Potential Measures for Mid to Long Term Reduction

- **Active use of biofuel**
 - Under appropriate price and supply
 - To reach the global ambition, Carbon Neutral Growth from 2020

- **Positive engagement in the ICAO-led Global MBM scheme**
 - Once it is finalized and implemented

- **New technologies**
 - Beyond current capabilities
Estimation and Goal

Fuel Reduction Plan

- BAU Fuel (liter)
- Aircraft-related Technology Development
- Improved Air Traffic Management and Infrastructure Use
- More Efficient Operations

BY Action Plan Measures
BY Potential Measures
Reduction measures

- **10 measures**

<table>
<thead>
<tr>
<th>Type</th>
<th>Reduction Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleet renewal</td>
<td>1. Replacement of old aircrafts with new</td>
</tr>
</tbody>
</table>
| **Air traffic management (ATM) and infrastructure improvement** | 2. Restriction of APU use
3. Performance Based Navigation (PBN)
4. Expanded use of shorter routes |
| **Efficient Operation** | 5. Reduced Legal Contingency Fuel Ratio
6. Improvement of Cost Index (CI)
7. Single-engine Taxi-in
8. Aircraft Engine Wash
9. Idle Reverse Thrust
10. Use of Lightweight ULDs |
Fleet renewal

- **Assumptions**
 - By 2017, all the planned aircrafts will be delivered
 - New aircrafts will be introduced to meet forecasted demand after 2017
 - Fleet composition will be similar to the past
 - Currently used aircraft will retire after **20 years** of usage
Reduction Estimation

Reduction by fleet renewal

- Fleet renewal will reduce 10.0% of GHG emissions by 2020

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel reduction (mil. liter)</td>
<td>114.0</td>
<td>359.8</td>
<td>829.6</td>
</tr>
<tr>
<td>CO₂ reduction (1,000 tCO₂)</td>
<td>287.9</td>
<td>908.8</td>
<td>2,095.2</td>
</tr>
<tr>
<td>Rate of Reduction</td>
<td>1.67%</td>
<td>4.88%</td>
<td>10.00%</td>
</tr>
</tbody>
</table>
Reduction by ATM and Infrastructure Improvement

<table>
<thead>
<tr>
<th>Reduction measure</th>
<th>Calculation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction of APU use</td>
<td>• First, airline’s 2011 restraint rates (%) of using APU by aircraft were surveyed. An appropriate future restraint rate was defined after consultation with relevant agencies. Thus corresponding fuel consumption reduction was estimated</td>
</tr>
<tr>
<td>Performance Based Navigation (PBN)</td>
<td>• Only the implementation of Air Route Double-tracking and CDA were reflected.</td>
</tr>
<tr>
<td></td>
<td>• Air Route Double-tracking: per flight flying time reduction × traffic volume × fuel reduction per flying time</td>
</tr>
<tr>
<td></td>
<td>• CDA: fuel reduction per flight by aircraft type × annual frequency of flight by aircraft type</td>
</tr>
<tr>
<td>Expanded use of shorter routes</td>
<td>• Defining the degrees of development and application of shorter routes in the future by relevant officials and experts.</td>
</tr>
</tbody>
</table>
Reduction by ATM and Infrastructure Improvement

<table>
<thead>
<tr>
<th>Fuel reduction (Mil. liter)</th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction of APU use</td>
<td>12.8</td>
<td>16.0</td>
<td>22.1</td>
</tr>
<tr>
<td>Performance Based Navigation (PBN)</td>
<td>6.2</td>
<td>24.6</td>
<td>61.5</td>
</tr>
<tr>
<td>Expand use of shorter routes</td>
<td>11.7</td>
<td>12.0</td>
<td>12.7</td>
</tr>
<tr>
<td>Total</td>
<td>30.7</td>
<td>52.7</td>
<td>96.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rate of fuel reduction (%)</th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction of APU use</td>
<td>0.19%</td>
<td>0.22%</td>
<td>0.27%</td>
</tr>
<tr>
<td>Performance Based Navigation (PBN)</td>
<td>0.09%</td>
<td>0.33%</td>
<td>0.74%</td>
</tr>
<tr>
<td>Expand use of shorter routes</td>
<td>0.17%</td>
<td>0.16%</td>
<td>0.15%</td>
</tr>
<tr>
<td>Total</td>
<td>0.45%</td>
<td>0.71%</td>
<td>1.16%</td>
</tr>
</tbody>
</table>
Reduction by Efficient Operation

<table>
<thead>
<tr>
<th>Reduction measure</th>
<th>Calculation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Legal Contingency Fuel Ratio</td>
<td>Per flight fuel reduction amount associated with the reduction of contingency fuel ratio from 10% to 5% × annual frequency</td>
</tr>
<tr>
<td>Improvement of Cost Index (CI)</td>
<td></td>
</tr>
<tr>
<td>Single-engine Taxi-in</td>
<td></td>
</tr>
<tr>
<td>Aircraft Engine Wash</td>
<td></td>
</tr>
<tr>
<td>Idle Reverse Thrust</td>
<td>Airline’s 2011 implementation rate (%) of each measure by aircraft were surveyed. An appropriate future rate of implementation was defined by consultation with relevant staffers. Thus corresponding fuel consumption reduction was estimated.</td>
</tr>
<tr>
<td>Use of Lightweight ULDs</td>
<td></td>
</tr>
</tbody>
</table>
Reduction by Efficient Operation

<table>
<thead>
<tr>
<th>Fuel reduction (mil. liter)</th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Legal Contingency Fuel Ratio</td>
<td>-</td>
<td>18.0</td>
<td>23.2</td>
</tr>
<tr>
<td>Improvement of Cost Index (CI)</td>
<td>22.3</td>
<td>25.7</td>
<td>33.0</td>
</tr>
<tr>
<td>Single-engine Taxi-in</td>
<td>4.5</td>
<td>6.2</td>
<td>10.0</td>
</tr>
<tr>
<td>Aircraft Engine Wash</td>
<td>9.1</td>
<td>11.8</td>
<td>14.9</td>
</tr>
<tr>
<td>Idle Reverse Thrust</td>
<td>4.1</td>
<td>5.0</td>
<td>6.8</td>
</tr>
<tr>
<td>Use of Lightweight ULDs</td>
<td>1.8</td>
<td>3.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Total</td>
<td>41.9</td>
<td>69.7</td>
<td>93.7</td>
</tr>
</tbody>
</table>
Reduction Estimation

Summary of reduction

<table>
<thead>
<tr>
<th>Reduction Measure</th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel reduction (Mil. liter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleet renewal</td>
<td>114.0</td>
<td>359.8</td>
<td>829.6</td>
</tr>
<tr>
<td>ATM and infrastructure improvement</td>
<td>30.7</td>
<td>52.7</td>
<td>96.2</td>
</tr>
<tr>
<td>Efficient operation</td>
<td>41.9</td>
<td>69.7</td>
<td>93.7</td>
</tr>
<tr>
<td>Total</td>
<td>186.5</td>
<td>482.2</td>
<td>1,019.5</td>
</tr>
</tbody>
</table>

Rate of reduction (%)			
Fleet renewal	1.67%	4.88%	10.00%
ATM and Infrastructure improvement	0.45%	0.71%	1.16%
Efficient operation	0.61%	0.95%	1.13%
Total	**2.74%**	**6.54%**	**12.29%**
Challenges and Response

Incompleteness of data and information

- **Fuel efficiency of aircraft**
 - Fleet renewal: biggest reduction potential (more than 80% of reduction)
 - Accurate estimation of reduction for this measure is essential for the plan

 > Reasonable assumptions based on real data

Replacing old aircrafts, 1 year earlier than the assumption (20 years)

- needs 1.4 additional new aircrafts
- reduces 46 million liter fuel, 116,000 tCO$_2$
- retrieves only 11.8% of investment (CO$_2$ price = 12 Euro/t)
Challenges and Response

Incompleteness of data and information

- Inconsistency of data
 - Different source, different standards for data

- Transformation of data

- Difficulty in access to sensitive information
 - Business information and good practices

 - Organizing a taskforce as a planning body

 - Efforts for increasing credibility between members of taskforce and other participants
Thank you very much