Sustainable raw material production for the aviation industry
INDEX

A. **Raw materials for the aviation industry**
 1. Biojetfuel value chain
 2. Aviation raw material requirements
 3. Selected second generation feedstocks

B. **Large scale raw material production. Short term**
 1. Biojetfuel feedstock projects
 2. Sustainability issues
 3. Response & solutions
 a. Short term second generation crops
 b. Production areas
 c. Agricultural inputs
 d. Plantation management

C. **BIOECA**
 1. Objectives
 2. Technological capabilities
 3. Current developments

Sustainable raw material production for the aviation industry
A. Raw materials for the aviation industry
A.1 Biojetfuel value chain

Major milestones

Processing: Several technological routes for the production of biojetfuel are being studied and developed. There are currently *tested and proven technology* processes for second generation feedstock, based on hydroprocessing vegetable oil.

Consumption: Prior to its use, the aviation sector will require certification. Certification is planned for 2011.

Biojetfuel feedstock projects

The assurance of raw materials in quantities and stable prices will be the biggest challenge for the development of the biojetfuel industry.
B.2 Aviation raw material requirements

The aviation industry is committed to exclusively use biofuels that are not affected by certain critical issues, including food supply, as well as land, water and environmental issues.

In this sense, the aviation industry will not use first-generation biofuel sources -like soy or palm-, but it shall use biojetfuel feedstock crops that are grown in a sustainable way, not competing for land or water with food crops.

The aviation industry is seeking biofuels made from second generation feedstocks that comply with the following characteristics:

- crops that do not interfere with the food sector
- produced in land not used for food production / marginal land
- not requiring excessive agricultural inputs
- providing a carbon footprint reduction compared to jet fuel
- providing an equal or higher energy content than jet fuel
- not threatening biodiversity
- providing socio-economic value to local communities
B.3 Selected second generation feedstocks

The aviation industry has initially selected four main potential second generation feedstocks: jatropha, camelina, algae and halophytes.

Based on the knowledge, experience and ongoing development of each of these raw materials, the following classification is presented:

Short term feedstocks

- **Camelina**
 - Rotational crop
 - Minimal inputs
 - Grown in marginal land
 - Meal approved as animal feedstock

- **Jatropha**
 - Perennial high oil yield
 - Non food feedstock
 - Grown in marginal land
 - Social benefits

Although very promising, jatropha projects are characterized by the need of manual harvest, the unstable, variable yield and the toxic meal.

Medium-long term feedstocks

- **Algae**
 - High growth rate
 - Very high production/yield
 - Grown in barren land

- **Halophytes**
 - Saline habitat species
 - Grown in barren land

Harvesting, processing and infrastructure issues have to be solved before reaching commercial viability for algae. Limited experience in halophytes.
B. Large scale raw material production. Short term
B.1 Biojetfuel feedstock projects

Biojetfuel feedstock projects involve all the phases in a biofuels life cycle that are upstream of oil consumption in a Biofuel Plant.

- Plantation
- Crop mechanization: planting and harvesting
- Crushing: oil and meal production
- Associated storage and logistics

The aviation industry will require sustainable raw material production projects in the short term. In order to supply this industry, it will be necessary to implement large scale agricultural production projects.

In order to ensure these large scale agricultural deployments, it will be crucial to guarantee their sustainability from all perspectives. In this regard there are several critical issues associated.
There are several issues to be tackled in order to ensure the sustainability of the project: **economic profitability**, **environmental respect**, and **social commitment**.

ECONOMY
- Crop productivity
- Oil content
- By-product use

ENVIRONMENT
- Mechanization
- Inputs
- SECOND GENERATION FEEDSTOCK PROJECTS
- GHG emission
- Sequestration
- Land use
- Water mgmt

SOCIAL
- Employment

Sustainable raw material production for the aviation industry
Guaranteeing the sustainability for large scale biojetfuel feedstock projects depends mainly on four primary issues:

ECONOMY
- Short term second generation crops
- Plantation management

ENVIRONMENT
- Agricultural inputs
- Production areas

SOCIAL

Sustainable raw material production for the aviation industry
B.3 Response & solutions

a. Short term second generation crops

The main technical criteria required for developing viable, large scale biojetfuel feedstock projects in the short term for the production of non-food raw material are:

<table>
<thead>
<tr>
<th>TECHNICAL CRITERIA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HARDINESS</td>
<td>Robust crop</td>
</tr>
<tr>
<td>TERM</td>
<td>Annual crop</td>
</tr>
<tr>
<td>CYCLE</td>
<td>Short</td>
</tr>
<tr>
<td>TECHNOLOGY</td>
<td>Mechanized crop</td>
</tr>
<tr>
<td>RISK</td>
<td>Extensive crop know-how</td>
</tr>
<tr>
<td>INPUTS</td>
<td>Low agricultural inputs</td>
</tr>
<tr>
<td>INVESTMENT</td>
<td>Low farm setup investment</td>
</tr>
<tr>
<td>EMISSIONS</td>
<td>Significant GHG emission reduction</td>
</tr>
</tbody>
</table>

Sustainable raw material production for the aviation industry
B.3 Response & solutions

b. Production areas

The target production areas for the development of short term, large scale raw material production projects for the aviation industry must not compete/interfere with land devoted to food production.

Using robust, annual, short cycle crops, there are mainly three different type of production areas that can be used for biojetfuel feedstock production:

- **MARGINAL LAND**
 Robust crops, with little water requirements and adapted to harsh climate conditions, can be grown in land where food crops are not viable.

- **ROTATIONAL/FALLOW LAND**
 Rotational/fallow land can be grown with annual second generation crops, increasing next crops productivity and preventing soil erosion.

- **DOUBLE CROP LAND**
 Robust, annual and short cycle crops can be grown within the same growing season in a double cropping scheme, preventing soil erosion.
B.3 Response & solutions

c. Agricultural inputs

A key issue related to the implementation of a sustainable feedstock project is **minimizing** the agricultural inputs – *chemical fertilizers and pesticides*, which directly affect the crop yield and product quality.

Reducing the agricultural inputs will bring two beneficial effects:

- GHG emission reduction – related to NOx
- Reduce the crop implementation costs

In order to achieve this goal it can be implemented:

→ **Biofertilization programs**
→ Systems for the efficient use of the inputs

d. Plantation management

Managing the plantations in a **highly efficient** manner implies integrating different **production technologies**, as well as **advanced management systems** that minimize agricultural inputs, secure production goals and maximize crop productivity.
C. BIOECA

Sustainable raw material production for the aviation industry
C.1 Objectives

BIOECA is a company that specializes in the implementation of integral and sustainable projects aimed at supplying the biofuel industry with competitive, non-food feedstock raw materials.

Our company’s mission is to ensure on-budget, on-time delivery of raw materials for different sectors of the bio energy industry, including **biodiesel** and **biojetfuel**.

BIOECA focuses in developing short term second generation projects with *camelina*, a non food, non invasive annual crop.

<table>
<thead>
<tr>
<th>Camelina Sativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTIVITY</td>
</tr>
<tr>
<td>HARDINESS</td>
</tr>
<tr>
<td>CYCLE</td>
</tr>
<tr>
<td>TECHNOLOGY</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>INPUTS</td>
</tr>
<tr>
<td>INVESTMENT</td>
</tr>
<tr>
<td>LAND</td>
</tr>
<tr>
<td>EMISSIONS</td>
</tr>
</tbody>
</table>

Sustainable raw material production for the aviation industry
C.2 Technological capabilities

BIOECA has incorporated **partners** and **technology collaborators** from complementary industries, in order to ensure the viability and success of the projects.

I. Genetic material

Camelina Company: Extensive agronomic and genomic intellectual property with exclusive access to the majority of the world’s Camelina germplasm.

II. Biotechnology

INAGROSA: Biofertilization programs developed with exclusive in-house technology.

III. Precision agriculture/Project Deployment

Universum Invenio: Proprietary management systems enabling the online handling, monitoring, and control of large scale plantations by neural computing.

The company’s technological capabilities focuses on two main lines:

- **The development and adaptation of new varieties to local weather and soil conditions and their implementation in large scale sustainable feedstock projects.**
- **Control, management, and optimization of large scale agro industrial exploitations.**

Sustainable raw material production for the aviation industry
C.2 Technological capabilities

Great Plains- The Camelina Company: Largest Camelina producer in the world and market and technology leader for the crop. Great Plains has an extensive proprietary germplasm bank, giving it the ability to produce new and improved varieties with adaptability to different weather conditions (www.camelinecompany.com).

INAGROSA: A company with a great commitment with environmental preservation that produces ecological plant nutrition products (bio stimulants and bio fertilizers). INAGROSA intervenes in a variety of farming projects through its vast distribution network in more than 56 countries (www.inagrosa.es).

UNIVERSUM INVENIO: Company dedicated to research, development, and commercialization of agricultural production technologies, as well as consulting services in production and operations’ management. Established in Hong Kong, it maintains R&D agreements with leading Universities and Institutes in Europe, United States and Asia. It has more than 20 years of experience in the R&D field.
C.3 Current developments

Sustainable raw material production for the aviation industry

- **Ongoing projects**
- **Projects under prospection**
C.3 Current developments

SPANISH PROGRAM ON BIOJET FUEL DEVELOPMENT AND QUALIFICATION

- Raw Materials
- Industrial Processing
- Certification
- Qualification

Vegetal Oil
Camelina

Hydroprocessing

BIOQUEROSENE
- “ASTM international standard D1655” Certification
- “Defence Standard 91-91” Certification

Engine testing in stand
Flight Testing

AESA/SENASA/OBSA:
Qualification and standardization work

Sustainable raw material production for the aviation industry
Sustainable raw material production for the aviation industry