Climate optimized routing of flights

Ulrich Schumann1,2), Robert Sausen2)

1) WMO Rapporteur Aviation and Environment
2) DLR Institute of Atmospheric Physics, Germany

on behalf of
Dr. Herbert Puempel, Chief, Aeronautical Meteorological Division, WMO
Climate optimized routing of flights

Robert Sausen, Klaus Gierens, Volker Grewe, Hermann Mannstein, Sigrun Matthes, Vilmar Mollwitz, Martin Schaefer, Marco Weiss

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

Workshop "Climate optimized routing of flights"
Berlin, 4 March 2010
Impact of uniform flight altitude change on contrail cover

Fichter et al., 2005
Impact of unit "emissions" as function of latitude and altitude

RF from H_2O

RF from contrails

RF from O_3

CH_4 lifetime change

C. Fichter, DLR, 2009
Change in frequency of contrails formation due to change of flight altitude

Mannstein et al., 2005
Contrail Cirrus Simulation and Prediction (CoCiP)

Input: Aircraft (BADA)

Movements (Eurocontrol, OAD, DFS)

Meteorology (NWP results, ECMWF, DWD)

Output: Contrail, life cycle, cover, radiation

Cirrus Simulation insitu, Lidar, Satellite

Sensitivity studies

Prediction Climate impact

- From regional to global
- Comparable to observations

(Schumann, 2009)
A test-realisation for the contrail case (BMBF UFO project)

- Global weather forecast model of the German Weather Service (DWD): estimates the potential contrail forcing
- The LIDO-OC (operational flight planning tool of Lufthansa Systems) uses this as an add-on to the cost function in the flight route optimization.

DLR, DLH, DWD, DFS, Mannstein et al. (2010)
En-Route to Sustainability (ICAO) - Avoid:

The wrong place at the wrong time
Conclusions

- The magnitude of the non-CO$_2$ effects depends on location, altitude and time of emission.
- Climate optimised flight planning opens the chance for a smaller climate impact of aviation.
- Climate optimised flight planning does not principally differ from traditional flight planning, only the cost function differs, the calculation of which requires additional meteorological and chemical information.
- A first test version of climate optimised flight planning (only contrails and fuel burn = CO$_2$) is already implemented within the Lufthansa Systems tools (UFO).
- A more comprehensive solution will be tested during the next few years (REACT4C).
Outlook

- A reliable forecast of the non-CO₂ aviation climate impacts arising from a single flight segment is required:
 - contrail cirrus,
 - chemical weather.

- The integration of climate cost functions in flight planning tools is necessary, e.g. based on incentives.

- Aircraft adapted to climate optimized flight routing should be developed.

- More on-board information should become available for the pilots.

- A realization of a climate optimised flight planning might be possible within a time frame of a decade.
Climate optimized routing of flights

35 participants from aviation industry, politics, service providers and regulative authorities mainly from Germany, but also from France and the Netherlands attained the workshop.

Discussion:

Airspace congestion was the main argument against any deviation from the current procedures,

but the majority of participants agreed, that climate optimized flight planning is a viable option for reducing the climate impact of air traffic.