Runway Excursion Mitigation and EMAS
Runway Excursions: Overruns – A Big Problem

- 40 per year (typically overruns for jet aircraft) for the past 16 years
- 34% of all turbojet aircraft accidents
- 24% of all turboprop aircraft accidents
- Over 50% of commercial aviation fatalities
- Excursions account for 83% of all fatal runway safety accidents

Source: Flight Safety Foundation

Kingston, Jamaica - Dec 2009

Brussels, Belgium – May 2008
Runway End Safety Areas (RESA)

- Provides a safety margin for aircraft that overshoot the runway surface
- Dimensions dictated by International Civil Aviation Organization (ICAO) and State Civil Aviation Authorities

- ICAO Required 60m + 90 m
- ICAO Recommended 60m + 240 m
- FAA Required 1000 feet (305 meter)
- FAA Recommended 1000 feet
- FAA Recommended 1000 feet undershoot protection w/ 70 Knot EMAS for overrun

EMAS in lieu of RESA allowed with Annex 14 Update
EMASMAX® - An Alternative to RESA
What is EMASMAX®?

- Bed of cellular cement blocks
- Placed at the end of a runway to decelerate an overrunning aircraft
- Tire/material interface provides resistive loads to decelerate the aircraft
- Reliably and predictably crushes under the weight of an aircraft
- The system is FAA-certified
- FAA-Approved computer model is used to determine final arrestor bed configuration
EMAS Design Criteria

- 70 Knots or better performance for all critical aircraft
 - Critical aircraft have more than 500 operations per year on runway

- Performance calculation
 - Aircraft braking and no reverse thrust from runway exit to entry of EMAS
 - No aircraft braking or reverse thrust once aircraft enters EMAS
Typical EMASMAX® Installation

Lead-In Ramp & Debris Deflector

Side & Rear Steps

Boston Logan Departure End of 15R
FAA Certification Test

Boeing 727 at 55 Knots
FAA Testing

- Jet Blast Resistance
- Crash and Rescue Vehicle
- Hot/Cold Temperatures
- Fire Resistance
<table>
<thead>
<tr>
<th>#</th>
<th>EMAS</th>
<th>Airport</th>
<th>Location</th>
<th>Departure End of RWY(s)</th>
<th>Installation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Rochester International</td>
<td>Rochester, NY</td>
<td>28</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Burbank</td>
<td>Burbank, CA</td>
<td>8</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Baton Rouge Metropolitan</td>
<td>Baton Rouge, LA</td>
<td>13</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Greater Binghamton</td>
<td>Binghamton, NY</td>
<td>16, 34</td>
<td>2002/2003/2011</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Greenville Downtown</td>
<td>Greenville, SC</td>
<td>1</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Barnstable Municipal</td>
<td>Hyannis, MA</td>
<td>24</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Roanoke Regional</td>
<td>Roanoke, VA</td>
<td>34</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fort Lauderdale Intl.</td>
<td>Fort Lauderdale, FL</td>
<td>27R, 9L</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Dutchess County</td>
<td>Poughkeepsie, NY</td>
<td>6</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>La Guardia</td>
<td>Flushing, NY</td>
<td>22, 13</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Boston Logan</td>
<td>Boston, MA</td>
<td>4L, 15R</td>
<td>2005/2006/2012</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Laredo International</td>
<td>Laredo, TX</td>
<td>17R</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Jinhua-Huanglong (JZH)</td>
<td>Jinhua Province, PRC</td>
<td>2, 20</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>San Diego</td>
<td>San Diego, CA</td>
<td>27</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Teterboro</td>
<td>Teterboro, NJ</td>
<td>6, 19</td>
<td>2006/2011</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Charleston Yeager</td>
<td>Charleston, WV</td>
<td>23</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Cordova</td>
<td>Cordova, AK</td>
<td>27</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Madrid-Barajas Intl</td>
<td>Madrid, Spain</td>
<td>33L, 33R</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Manchester</td>
<td>Manchester, NH</td>
<td>6</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Wilkes-Barre/Scranton Intl</td>
<td>Wilkes-Barre, PA</td>
<td>4, 22</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>San Luis Obispo</td>
<td>San Luis Obispo, CA</td>
<td>11, 29</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Chicago-O’Hare Intl.</td>
<td>Chicago, IL</td>
<td>4R, 22L</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Newark International</td>
<td>Newark, NJ</td>
<td>29</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Charlotte Douglas Intl</td>
<td>Charlotte, NC</td>
<td>36R</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>St. Paul Downtown</td>
<td>St. Paul, MN</td>
<td>14, 32</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Reading Regional</td>
<td>Reading, PA</td>
<td>13</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Kansas City Downtown</td>
<td>Kansas City, MO</td>
<td>19, 1</td>
<td>2009/2010</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Smith Reynolds</td>
<td>Winston-Salem, NC</td>
<td>15</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>New Castle County</td>
<td>Wilmington, DE</td>
<td>19</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Key West Intl.</td>
<td>Key West, FL</td>
<td>9</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Areata-Eureka</td>
<td>Areata, CA</td>
<td>32</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Telluride Regional</td>
<td>Telluride, CO</td>
<td>9, 27</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Taipei Songshan</td>
<td>Taipei, Taiwan</td>
<td>10</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Palm Beach International</td>
<td>West Palm Beach, FL</td>
<td>14</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Martin County/Witham Field</td>
<td>Smart, FL</td>
<td>30, 12</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Republic Airport</td>
<td>Farmingdale, NY</td>
<td>14</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Cleveland Hopkins Int’l</td>
<td>Cleveland, OH</td>
<td>10, 28</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Lafayette Regional</td>
<td>Lafayette, LA</td>
<td>22L, 4R</td>
<td>2011, 2013</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Groton New London</td>
<td>Groton, CT</td>
<td>5, 23</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Augusta State</td>
<td>Augusta, ME</td>
<td>17, 35</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Elmira-Endwell Regional</td>
<td>Elmira, NY</td>
<td>6</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Kievik Airport</td>
<td>Kristiansand, Norway</td>
<td>04, 22</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Trenton Mercer Airport</td>
<td>West Trenton, NJ</td>
<td>16, 34</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Coastal Carolina Regional</td>
<td>New Bern, NC</td>
<td>22</td>
<td>2012</td>
<td></td>
</tr>
</tbody>
</table>

75 Systems Installed
Key West (EYW) International Airport Arrestment

3 Nov 2011: Cessna Citation 550 private jet with 5 passengers & crew

No injuries
Runway reopened within 2 hours

Photos Courtesy of Key West Int’l Airport

ZODIAC AEROSAFETY / ARRESTING SYSTEMS / ESCO
Teterboro Arrestment – October 2010

Teterboro, NJ Airport
Runway 06 Departure End

With EMAS - Arrestment
October 2010

Prior to EMAS - Overrun
February 2005

Above Photos Courtesy of Port Authority of NY & NJ
Charleston (CRW) Airport Arrestment

19 Jan 2010: US Air Express, Flight 2495, CRJ-200 regional jet with 34 pax & crew

No injuries

Runway reopened just under 6 hours

Aircraft returned to service
EMAS Installation
Yeager Airport Departure End of Runway 23
Charleston, WV
Toronto International Airport Accident

- TSB Final Accident Report
 12 Dec 2007

“The Board believes that all such runways could benefit from a RESA built in accordance with the ICAO Annex 14 recommended practice or the FAA’s runway safety area (RSA) standard

The Board believes that there exists a requirement for an alternate means of compliance, such as the use of an engineered material arresting system to provide a level of safety that is equivalent to a 300 m RESA”.
Chicago Midway Airport Accident

- NTSB Final Accident Report AAR-07-06
 - Findings Conclusion #23

“The absence of an Engineered Material Arresting System (EMAS) installation in the limited overrun area (RESA) for Runway 31C contributed to the severity of the accident; Even a nonstandard EMAS installation would have safely stopped the airplane before it left airport property.”
Final Thoughts

EMAS minimizes risk, saves aircraft and saves lives!

Mark Slimko, Business Development
Engineered Arresting Systems Corp. (ESCO)
Zodiac Aerospace
mark.slimko@zodiacaerospace.com
(O): +1 856 241-8620 x484
(M): +1 815 715-2100
Target Level of Safety

- Overrun Studies – Statistical Analysis
 - FAA
 - 90% of overruns came to rest within 1000’ (305m) beyond runway end
 - 90% of overruns exited the runway at a speed of 70 knots or less
 - ICAO State Letter AN 4/1.1.52-11/41, Attachment D, 30 May 2011, ICAO ADREP database
 - Standard 90m captures 61% of overruns
 - Recommended 240m captures 83% of overruns
ICAO RESA vs. ADREP Accident Database

Recommended RESA - 240m

Width of both Standard and Recommended RESA is equal to graded portion of strip

Not to Scale
EMASMAX® and RESA Comparison – FAA Guidance

- **EMASMAX® requires far less space to stop an aircraft**
 - ~650’ (200m) required to stop B747/A380 exiting at 70 knots
 - 70 Knot Stopping capability in less distance for smaller aircraft
 - FAA Grants full RESA (RSA) compliance for a 70 knot system that is 600’ (~180m) from runway threshold and the end of the EMAS

![Diagram showing distance comparison between EMAS and FAA requirements]

70 Kt. EMAS

FAA Required (1,000’)
ICAO Recommended (240m + 60m)
EMASMAX® and RESA Comparison – FAA Guidance

- EMASMAX® requires far less space to stop an aircraft
 - Insufficient RESA available for 70 knot system?
 - Maximum deceleration in available RESA
 - Minimum exit speed of 40 knots

40 - 50 Kt. EMAS
45 - 60m
Potential EMAS Capabilities

- Gain Recommended RESA stopping capability/capture rate/target level of safety in less space

70 Kt. EMAS for 737, A320 and Smaller Aircraft (≤150m)

ICAO Recommended (90m + 60m)

150m of RESA allows enough space for aircraft exiting ~50 knots
EMASMAX® and RESA Comparison – UNABLE to achieve ICAO Standard RESA Length

- Potential EMAS Capabilities
 - Gain Standard RESA stopping capability/capture rate/target level of safety in less space

40 - 50 Kt. EMAS
45 - 60m