Document Authentication

Todd Kealey

The world turns to 3M for identification solutions
3M Credentials

- Identification and Authentication business of 3M is a unit of the Security Systems Division
 - Initial focus on document materials and secure laminates
 - Added Canada-based document issuance and border management business in 2002 (AiT)
 - 2006 saw the addition of secure printer (SPSL – UK)
 - Acquired Rochford Thompson, document reader vendor, in 2007
3M Projects

- **Document Issuance**
 - Consular issuance of UK ePassport
 - Manufacture and domestic personalization of UK ePassport
 - Caricom Visa in support of Cricket World Cup
 - ILO Seafarer ID in Nigeria and Indonesia

- **Border Management**
 - KMAR – The Netherlands

- **Document Data Capture or Authentication**
 - Multiple airlines and national governments
Document Authentication

- Identity Documents are secured in layers
 - Materials: chips, laminates, inks, overt & covert attributes
 - Personnel and facilities
 - Process: controlled work flow, audit trails, reporting

- In today’s world, the detection of counterfeit ID documents requires:
 - Optical document authentication
 - Electronic document authentication
Optical Document Authentication

- Document data capture
 - *Multiple illuminations: visible, infra-red, ultra-violet, others*

- Document identification
 - *Data extraction: find text objects, barcodes and graphical patterns*
 - *Determine type: passport, visa, driver’s license, national ID, other*
 - *Determine if known: is reference data available for comparisons?*

- Optical Authentication
 - *Compare document attributes to those of known references*
 - *Is there evidence of tampering?*
Optical Document Authentication
Electronic Document Authentication

- ePassports and SmartCards include microchips
- Data is secured using two mechanisms:
 - Authentication: encoded information that is used to ensure that the content is original and unmodified
 - Access Control: only a knowledgeable or approved system may gain access to the electronic data
Authentication Mechanisms:

- **Passive Authentication**
 - A mandatory requirement of the ICAO specification
 - Verification of digital signature on the document’s data groups (face, MRZ text, etc.)
 - Security Object can also be verified via PKD

- **Active Authentication**
 - Certificate stored in DG15
 - Inspection system challenges the chip
 - Chip uses a secret key to sign challenge data
 - Matching data proves that chip is not a clone
Access Control

- **Basic Access Control**
 - Requires reader to provide text from MRZ to gain access to electronic data

- **Extended Access Control**
 - Additional security for sensitive biometric data
 - Complements, does not replace BAC
 - Mutual validation of credentials: Chip Authentication & Terminal Authentication
 - Increase security of session keys
 - Limit access to Inspection Systems that can prove to the chip the right of access to 2nd biometric data
EAC Components: Chip Authentication

- What it does
 - Verifies that the chip is genuine, not cloned
 - Provides new, more secure session keys used to encrypt messages between chip and inspection system (prevents eavesdropping)
 - Must be executed after BAC

- What it doesn’t do
 - Prove the contents of the chip are unaltered (use passive authentication)
 - Prove that the terminal has any right to access ‘sensitive’ data
 - Alter the security status on the chip
EAC Components: Terminal Authentication

- **Terminal Authentication**
 - *Onus on now Inspection System to prove it is entitled to access ‘sensitive’ biometric data*

- **What it does**
 - *Prevents unauthorized access to sensitive data including fingerprints and iris scan if available*
 - *Must previously have performed Chip Authentication*

- **What it doesn’t do**
 - *Prevent a stolen inspection system from gaining access to sensitive data groups*
 - *Prevent an inspection system being compromised*
Extended Access Control Issues

- Secure certificate storage and key management is required
 - Each country is required to set-up and maintain a certificate infrastructure to issue and distribute certificates
 - Need bilateral relationships with each issuer
 - Constantly needs to be updated and maintained
 - Large number of certificates need to be managed

- Location of key store
 - Local: Timely access but must be secured and protected
 - Central: Reduced risk of “theft” but providing access to all inspection sites is an IT & telecom burden

- What is the time impact on inspections?
Extended Access Control Issues

- Chips need to updated
 - With date/time and new Country Verifier Certificate Authority Certificates to prevent access with ‘old’ certificates
- No specification how the Inspection System interfaces with Document Verifier Certificate Authority or DVCA and CVCA
- Managing many inspection authorities with one country
 - Over 30 different DVs in the Netherlands alone
- Chips still in development
- Conformity specification in development
- Certificate policy document not implemented
- No PKI infrastructure in place
Wrap-up

- Document Authentication continues to mature
 - Optical & Electronic authentication offer the highest levels of security assurance
- Document Authentication is the next critical phase in validating travelers
- Full page readers and automation are fundamental tools for validation of documents
Please enjoy the reception!