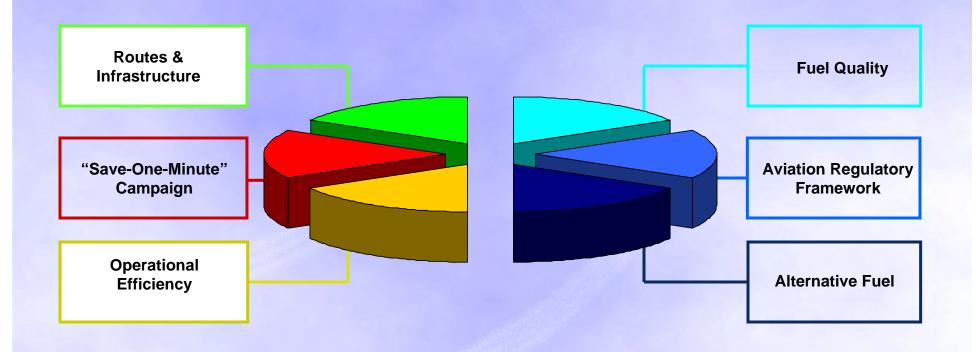


IATA Fuel Conservation Programme

Juergen Haacker Director, Operations IATA


Campaign Objective and Achievements

- ➤ Annual Objective :
 - Secure fuel savings of USD 1.5 billion for airline members through improvements of
 - routes and infrastructure
 - air traffic management ("Save one Minute")
 - operational efficiency

Extended Campaign – Elements

Operational Efficiency – The IATA "Fuel Book "

- > 2nd edition available
- Reflecting experience from Go -Team visits
- Integrated with IATA fuel conservation training
- Additional chapter on environmental impact

2 edition

Operational Efficiency – GÖ Teams

- > 52 assessments completed, 35 additional visits scheduled
- Survey conducted on visited or scheduled airlines
- > Five GO Teams in place, including experts in
 - Flight Operations,
 - Flight Dispatch
 - Engineering & Maintenance

Fuel Efficiency Gap Analysis (FEGA)

- ➤ Individual on-site assessments by Go Teams
 - Detailed joint analyses of airline procedures and practices
 - Comprehensive recommendation report including potential calculation for each action

Price of fuel		USS/Gal	US\$/kg			
The original	FUEL PRICE	1.820	0.599			
APU Usage Reduction per cycle	ketv	APUhrs	Target/Dep	TargetArr	Cyclesiyr	APU B
8767-300	150.0	2600	15	5	1,200	330,
APU Optimization (one pack only)	kg/hr	Dept/min	Arrimin	Cyclestyr	Savings/kg	Savin
8767-300	35.0	15	5	1,200	14,000	\$8,3
APU Usage 18 minute reduction /cycle	kg/hr	Reduc/Min	Cyclestyr	Savingskg		Frequ
E767-300	150.0	10	1,200	30000	\$17,972	100
APU Optimization (one pack)	Kghr	hrs/ yr	Savingskg	Savings/S	Frequency	
8767-300	35.0	2600	91,000	\$54,516	100%	\$54,
APU ON Bleed off on ground	Kghr					

FEGA Go Team Results

- Completed 52 airline visits since August 2005
- > 35 scheduled for 2007
- > Airlines located in all global regions
- > From regional airlines to major carriers
- > Fleet size varies from 6 to 150 aircraft
- Aircraft ages vary from < 5 to > 20 years
- Individual reports indicate further saving potentials between 3 and 15 % of airline fuel budget
- > Total saving potential already exceeds USD 1.2 Billion

FEGA Conclusions - Flight Operations

- Aircraft weight higher than necessary (water, kits)
- Reserve fuel calculations too conservative
- > Lack of training and awareness at line pilots
- Extensive use of Auxiliary Power instead of Ground Power
- Lack of implementation management and monitoring

FEGA Conclusions – Flight Dispatch

- Lack of sophisticated Flight Planning
- Missing procedures and policies for Flight Preparation
- Clear risk management strategy
- Significant individual variations on fuel consumption calculations
- Lack of training and awareness at Flight Dispatchers
- Lack of implementation management and monitoring

FEGA Conclusions - E & M

- ➤ Lack of structured communication between Flight Operations and E&M often only in case of significant performance loss
- Limited knowledge about cost benefit relation between additional maintenance efforts and fuel savings
- Missing overall operational performance monitoring and analysis
- Lack of training and awareness at maintenance staff

Fuel Quality

Actual Status

- IATA Fuel Quality Pool IFQP
- 51 Airlines Members 85 Approved IFQP inspectors
- 838 Inspected Airports Audit interval 2 years

Our Target

One global fuel quality standard

Regulatory Framework

- ➤ Fuel policies and operational interpretation differ widely (source: FEGA visits)
- ➤ ICAO Annex 6 offers limited guidance
- > Environmental and cost reasons require update
- > IATA proposes WP to amend ICAO Annex 6

Alternative Fuel

Completed IATA Alternative Fuel Report 2006

Topics 2007

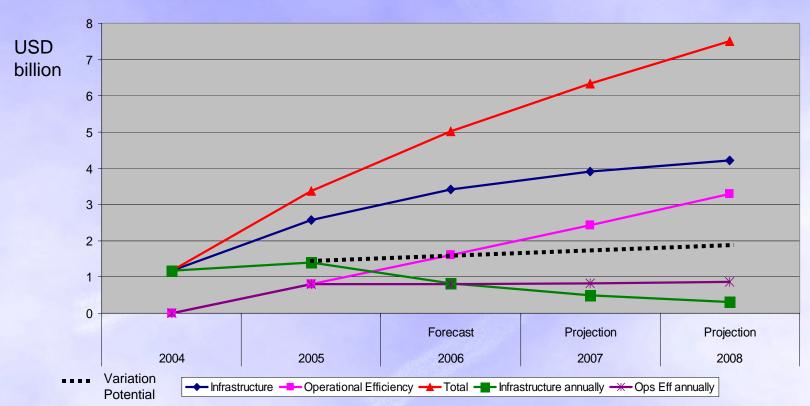
- Environmental impact overall lifcycle
- Projection of production capacities and capabilities
- Airline procurement strategies

Situation 2007

ATM Improvements – up to 12 (15?) %

Identified in IATA Campaign < 1%

Fuelbill anually


120billion USD

Operational Efficiency Improvements – up to 6%

Identified in IATA Campaign – 1.5%

IATA Fuel Efficiency Campaign Accumulated and Projected Savings 2004 - 2008

Conclusions

- Airlines increasingly support the Operational Efficiency initiative
- "Low hanging fruits" implemented on Route and TMA Improvements
- Collaboration with Air Navigation Service providers and states needs further momentum

Thank you for your attention!

