

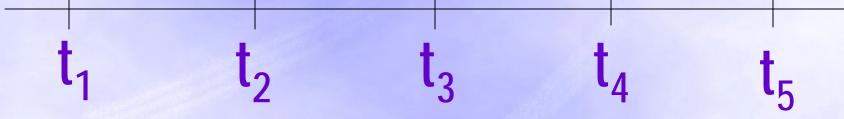
Katsuhiro Yamaguchi
Professor, Graduate School of Public Policy
ITPU
The University of Tokyo GraSPP
THE UNIVERSITY OF TOKYO

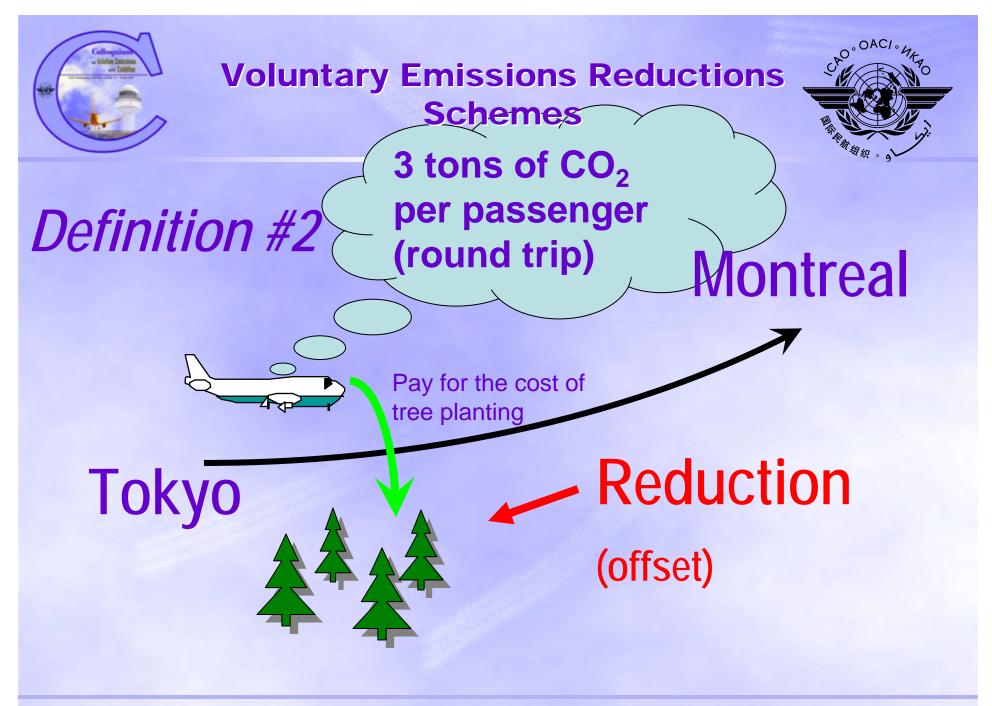
Outline

- > Basic issues
- > Experience in Japan
- > Concluding remarks

1. Basic issues

➤ What is meant by "Emissions Reductions"




Reduction

New initiatives

* BAU: Business as Usual

Definition #3

- ➤ Improving Intensity
 CO₂ per RPK, RTK per
 Gallon of fuel, etc.
- ➤ Reducing Absolute Emission CO₂ ton per annum

- Intensity targeting is more equitable when there is discrepancy in growth
- ➤ If the goal is to reduce CO₂ ppm in the atmosphere, then the absolute emission level is important

➤ What is meant by "Voluntary"

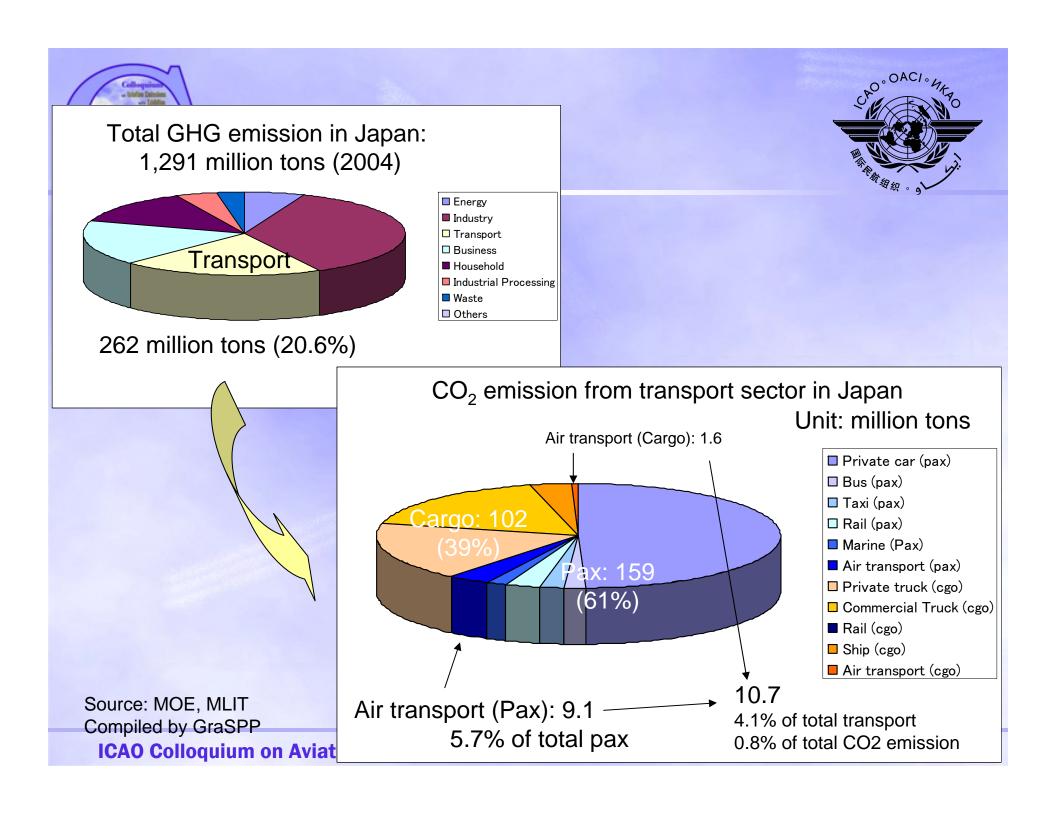
- >"Voluntary" by Who?
 - **√** Airlines
 - ✓ Passengers/Shippers
 - **✓ How about Airports?**

- > Various types of schemes
- >"Voluntary" with linkage to some other mechanism?

No: Unilateral commitment (individual or group), offset

Yes: Agreement with the government, voluntary ETS

>"Voluntary" with incentives? **No: Unilateral Commitment** (there could be intangible benefits when target is achieved and social sanctions when not), Carbon offset


- >"Voca Torget achieved.
 - Yes: Target achieved:
 - √ Reward (tax breaks, subsidy)
 - ✓ Sell CO₂ through ETS Target not achieved:
 - **✓ Penalty**
 - ✓ Purchase CO₂ through ETS

2. Experience in Japan

- The case of unilateral commitment by airlines -

CO₂ emission reduction in domestic air transport in Japan

1997 ➤ Airline voluntary plan as part of multisector program by Nippon Keidanren (Japan Business Federation)

CO₂/ASK $\Delta 10\%$ by 2010 (base year

1990)

COP4

COP3

1998 ➤ Airline voluntary plan consolidated into transport-sector program by Ministry of Transport

Note: ASK (Available Seat Kilometers), **RPK** (Revenue Passenger Kilometers)

1999 ➤ Voluntary plan incorporated into the Global Warming Prevention Package

 CO_2/RPK $\Delta 7\%$ by 2010 (base year 1995)

1.1 MT-CO₂ reduction by 2010 (base year 1995) COP5

2002 ➤ CO₂ intensity
target is converted
into CO₂ emission
level in the Global
Warming Prevention
Package ver2

Japan ratifies Kyoto

➤ Achieved 1.77 MT-CO₂ reduction $(CO_2/RPK\Delta 14\%)$

(base year 1995)

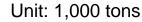
COP₁₀ /MOP1

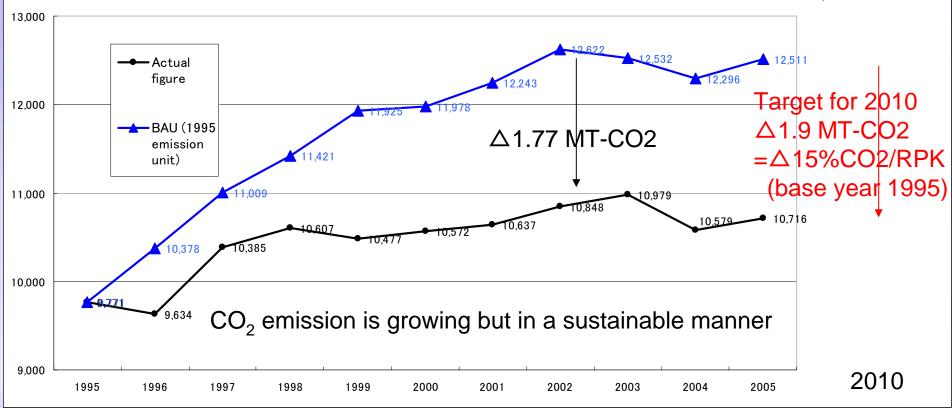
2005 ➤ Reduction target revised and incorporated into the legal framework of National COP3 Achievement Plan

1.9 MT-CO₂ (CO2/RPK△ 15%) (base year 1995) firms)

Kyoto Protocol comes into effect

<Addendum>


2005 ➤ Revised Energy
Conservation Law
stipulates targets for
transport sector


Energy Consumption per ASK△1% per annum from 2006 (a common target for large transport firms)

>Was the voluntary plan effective?

CO₂ intensity

=CO₂ per RPK

= function of

- 1) technological & operational improvementsapproximated by time trend (t)
- 2) voluntary plan dummy variable since 1998 (*d*)
- 3) average flight stage (dis)
- 4) load factor (L/F)
- 5) average aircraft size (capa)

Annual technological & operational improvement: 1.1% per annum
 =25% improvement in 20 years since 1985

Impact of the voluntary plan:
3.6% improvement
after 1998 (in addition to the above)

Parameter	Estimate	Error	t-statistic	P-value
C	6.90	0.35	19.45	[.000]
t	-0.011	0.001	-11.44	[.000]
d	-0.036	0.008	-4.52	[.000]
In(dis)	0.26	0.09	2.95	[.003]
L/F	-1.24	0.06	-20.98	[.000]
In(capa)	-0.49	0.07	-7.03	[.000]
rho	-0.37	0.20	-1.90	[.057]

Dependent variable: $In (CO_2/RPK)$ Estimated by autoregressive mode (AR1) with data from 1985 to 2005, Adjusted R-squared = 0.982

3. Concluding remarks

Observations on voluntary vs. mandatory schemes -

non-monetary Soft governance

external engine control/regulation

Cap & Trade Hard governance

Schemes Voluntary internal motivations

Some schemes are linked to incentives

monetary

Difference in governance structure Why?

- ➤ What is the goal?

 Technology driven dynamics vs. short-term achievements
- ➤ How is the decision made?
 Multi-agent collective goal-seeking vs. hierarchical control

- >What is the time frame?
- ➤ To what extent should international aviation contribute?
- >Who should take the initiative?

Thank you for your attention

