

Impact of Fossil Versus Alternative Fuels on Local Air Quality and Climate

Dr. Lourdes Q. Maurice Federal Aviation Administration United States

ICAO Colloquium on Aviation Emissions with Exhibition

Outline

The Issues & Drivers
 Alternative Fuels Basics
 Causes for Caution & Optimism
 The Way Ahead

Issues Within an Environmental Context

The Environmental

1. Energy

2. Climate Change

3. Toxics

5. SIPs

From An Air Quality Perspective by Steve Ramsey

Energy Tops the List of Environmental Concerns

- Increasing demand
- Worries about supply peaks and decline
- Supply interruptions
- Geopolitical instability
- Price Stability
- Government regulation to increase "national" fuels
- Environmental pressures

Drivers for Commercial Alternative Aviation Fuels

ICAO Colloquium on Aviation Emissions with Exhibition

14 - 16 May 2007

CAO. OAC/

Outline

The Issues & Drivers
 Alternative Fuels Basics
 Causes for Caution & Optimism
 The Way Ahead

Jet Fuel Chemistry 101

Jet Fuel comprises vast array of compounds

Paraffin – $C_n H_{2n+2}$

CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃

Iso-Paraffin – C_nH_{2n+2}

CH₃CHCH₂CHCH₂CH₂CH₃ CH₃CH₃CH₃

Naphthene – $C_n H_{2n}$

Aromatic $-C_nH_{2n-6}$ C_2H_5

Ringed compounds related to higher particulate matter (PM)

ICAO Colloquium on Aviation Emissions with Exhibition

Potential Alternative Aviation Fuels

Drop-in replacements

1. Low Sulfur Jet-A

Note: Jet-A or Low Sulfur Jet-A can be derived from conventional oil, tar sands, extra heavy oil, or oil shale

2. *Fischer-Tropsch (F-T) Fuels* Synthetic jet fuel created from coal, natural gas, or biomass

Truly Alternative Liquid Fuels (NOT a drop-in replacement)

- 3. *Bio-Fuels* infinite variety (grass to algae), reusable, low feedstock yield
- 4. Cryogenic Fuels (Hydrogen, methane)

Alternative Fuels Composition

Fuel + x1 O₂ → x2 H₂O + x3 CO₂ (complete combustion)
 Assume sulfur in fuel is fully converted to SO₂

Fuel	Chemical Composition	Carbon Mass Fraction	CO2 El g/kg	H2O El g/kg	SOx El g/kg
Jet-A	CmHn	86.2	3157	1237	0.80
Low S Jet-A	CmHn	86.2	3157	1237	0.03
F-T Synfuel	CmHn	84.9	3111	1349	-
BioDiesel, B100	CmHnO2CH3	77.6	2726	942	-
Methanol	СНЗОН	37.5	1374	1125	_
Ethanol	C2H5OH	52.1	1911	1173	_
Butanol	C4H9OH	64.8	2375	1215	-
Octanol	C8H17OH	73.8	2703	1215	-

Moses et al., SwRI-8531, 1997

Fischer-Tropsch Fuels Environmental Implications

Less Emissions

- ~ 1.6% less CO₂ created during fuel combustion
- 50% to 90% less particulate matter (PM) (measured)
- 100% reduction in SOx
- ~ 1% less fuel burn (increased gravimetric energy density)

ICAO Colloquium on Aviation Emissions with Exhibition

PM is a Growing Concern for Aviation

14 - 16 May 2007

- Particulate matter (PM) impacts health and welfare and contributes to visibility degradation
- Many U.S. airports in areas that are not compliant with national air quality standards for PM
- > PM also a concern because of potential climate impacts

ICAO Colloquium on Aviation Emissions with Exhibition

Alternative Aviation Fuels Development Maturity

ICAO Colloquium on Aviation Emissions with Exhibition

ICAO Colloquium on Aviation Emissions with Exhibition

Relative CO₂ Emissions for ACI-Various Alternatives

Next Steps: Life-Cycle Analysis

Source-to-Tank Analysis

CO2, CH4, CO, NOx, SOx, VOC All per unit energy delivered to tank

Analysis examines each part of the fuel production cycle using accepted databases such as the Argonne GREET model

Tank-to-Wake Analysis

Use existing data to estimate:

- Greenhouse gas emissions
- Emissions affecting local air quality
- > Aircraft noise (weight impacts)

Focus is on estimating environmental impacts versus aviation economics

Analysis to use FAA-developed tools (Ref. Panel 2, Prof. Waitz)

Analyses combined to determine impacts on costs, energy use, climate, local air quality, and noise resulting from alternative aviation fuel use.

ICAO Colloquium on Aviation Emissions with Exhibition

Outline

The Issues & Drivers
 Alternative Fuels Basics
 Causes for Caution & Optimism The Way Ahead

Alternative Aviation Fuels Reasons for Optimism

Alternative Fuels may be Environmentally Friendly
 Helps Manage Interdependencies
 Enhances Energy Security
 Aviation's May Have Potential as Early Adapter
 Sustained High Costs Keep Synthetics Viable

Alternative Aviation Fuels

The Issues & Drivers
 Alternative Fuels Basics
 Causes for Caution & Optimism
 The Way Ahead

Next Steps

- Establish whether we can and should pursue alternative aviation fuels
- Establish the net environmental benefits taking into account potential environmental costs – that would arise from such fuels; and
- Identify the framework and policies required to facilitate adoption of alternative fuels

<u>Commercial Aviation</u> <u>Alternative Fuels Initiative</u>

Commercial Aviation Industry Consortium Formed to work with DoD/DOE/NASA to pursue alternative fuels for the purpose of:

Securing a stable fuel supply

- Reducing environmental impacts
- Improving aircraft operations
 Furthering research and analysis

Closing Observations

Alternative Fuels Not Abstract – In Use Today
 "Drop-In" Synthetic Fuels Feasible Near Term

 Tank to Wake Emissions Reductions

 Need to Consider Source to Tank Impacts
 Renewable Fuels Offer Longer-Term Potential

 Source to Wake Emissions Reductions

 Need to Assess Impacts Carefully
 Been on this Road Before – Let's Stay the Course