Agenda Item 2: Air Navigation Issues
2.3 Follow-up to other Air Navigation Issues

RUNWAY SAFETY AREA IMPROVEMENTS IN THE UNITED STATES

(Presented by the United States of America)

SUMMARY

The United States Federal Aviation Administration (FAA) places a high priority on improving runway safety areas (RSA) at commercial service airports to meet current standards. Since 2000, the FAA has worked with commercial service airports to improve RSAs to meet standards or to help these airports get as close to standards as possible, if full compliance is not feasible. There are approximately 570 commercial service airports and 1,020 commercial service runways in the United States. The number of runways that substantially meet RSA standards has increased from 55% in 2000 to 72% in 2007. FAA’s goal is to have all possible improvements completed by 2015 when as many as 87% of the runways will substantially meet RSA standards.

1. INTRODUCTION

1.1 A runway safety area is defined as surface surrounding the runway prepared or suitable for reducing the risk of damage to airplanes in the event of an undershoot, overshoot, or excursion from the runway. RSA standard dimensions have increased over time. The predecessor to today’s standard extended only 200 feet from the ends of the runway; today, a standard RSA can be as large as 500 feet wide and extending 1,000 feet beyond each runway end. The standard dimensions have increased historically to accommodate larger and faster aircraft and to address higher safety expectations of aviation users.

1.2 New standards that are applied to existing airports create a problem. Many runways do not meet current standards because they were constructed according to an earlier standard. The problem is compounded by the fact that the airports are increasingly constrained by nearby land development and other natural features. The FAA recognized a growing gap with respect to RSA standards by the late 1980’s. Although the 1990’s saw progress towards closing this gap, there was little oversight or specific federal goals for making RSA improvements. In 2000, FAA established an RSA improvement program with the goal of making all significant and practicable improvements at runways used by commercial service aircraft.
1.3 There are approximately 570 airports and 1,020 runways that are used by commercial service aircraft. Runways substantially meeting RSA standards increased from approximately 46% in 1990 to 72% by June 2007. Just as important, the potential for RSA improvements has also increased dramatically. In 1996, 36% were non-standard runways that were determined to be not practicable to improve. According to FAA findings in 2007, 17 (3%) non-standard runways will in fact not be improved because improvements are not practicable.

2. FAA STANDARDS AND POLICY

2.1. FAA Advisory Circular (AC) 150/5300-13, Airport Design, prescribes RSA design standards. This document guides the basic layout for all airports in the U.S. that are certificated under 14 CFR Part 139 or that are subject to assurances from Airport Improvement Program (AIP) grant funding. The standard dimensions of the RSA depend upon the aircraft and the approach procedure visibility minimums associated with the runway. Generally smaller and slower aircraft require smaller RSA dimensions. RSA dimensions range from 120 feet wide by 240 feet beyond the end of the runway to 500 feet wide by 1,000 feet beyond the end of the runway. Except under special conditions, the RSA standard dimensions for runways used by aircraft with approach speeds of 121 knots or more (approach category C) are 500 feet wide and 1,000 feet long. This is the RSA standard dimension for most, but not all, runways used by commercial service carriers. See Figure 1.

Figure 1. Runway Safety Area Dimensions

- RSA Length: 240 to 1,000 ft
- RSA Width: 120 to 500 ft

2.2 Runway safety area standards cannot be modified like other dimensional standards contained in AC 150/5300-13. Instead, the regional airports division manager is required to make a practicability determination of the best alternative for improving any RSA that does not meet standards. The practicability determination then becomes the requirement for compliance with 14 CFR Part 139. FAA Order 5100.8, Runway Safety Area Program, contains procedures for making RSA practicability determinations. This order encourages incremental improvements, even when full RSA standards are not possible. The objective is to make continual improvements as they become practicable and to never loose focus on the overall goal to improve each RSA to meet standards.

2.3 It is not always possible to improve RSAs to meet full dimensional standards. Construction costs can be exceedingly high when the airport is constrained by nearby natural features or urban development. Environmental constraints can also hamper RSA expansion proposals. Order 5200.8 identifies acceptable alternatives to constructing or expanding the RSA. These alternatives include:
2.4 Projects that result in shorter runways or use declared distances could have a negative impact on airport operations. Aircraft might be required to operate at a reduced weight on a shorter runway. FAA policy does not allow reducing runway length or the use of declared distances if there would be an operational impact on the aircraft currently using the airport.

2.5 FAA Order 5100.9, *Financial Feasibility and Equivalency of Runway Safety Area Improvements and Engineered Material Arresting Systems*, was issued in 2004 to provide additional guidance for making practicability determinations. This order establishes a maximum feasible RSA improvement cost above which improvements may not be practicable. It also encourages the use of EMAS as an acceptable and desirable alternative when the full RSA is not practicable. In fact, it establishes EMAS as an equivalent alternative to a standard RSA in terms of safety enhancement. It also requires a life cycle cost comparison with any alternative that results in a standard-sized RSA. The maximum feasible cost of Order 5100.9 is based on the cost of adding EMAS beds on either end of an existing, sub-standard RSA. In other words, an EMAS installation on both ends of an existing RSA is financially feasible by definition, regardless of the actual cost to install the EMAS at any particular location.

2.6 Change 8 to AC 150/5300-13 allows the use of EMAS as an alternative way to meet RSA standards. An RSA can meet current FAA design standards if:

 a. An EMAS bed conforming to the requirements of AC 150/5220-22, *Engineered Materials Arresting Systems (EMAS) for Aircraft Overruns*, is capable of stopping the design or critical aircraft that leaves the end of the runway traveling at 70 knots;

 b. The RSA extends at least 600 feet beyond the end of the runway;

 c. The approach end of the runway provides vertical guidance (visual or electronic) for landing aircraft. See Figure 2.

2.7 Order 5100.9 has had a profound affect on RSA improvement plans and the overall FAA goal. Preliminary planning was re-scoped for many improvement projects to comply with the new requirements. There has been a significant reduction in the number determinations that the RSA cannot be improved. Finally, projected costs for completing all practicable improvements has continued to climb because of the maximum feasible cost policy.
3. PLANS AND ACCOMPLISHMENTS

3.1. The FAA’s goal for all RSA improvements is to complete all practicable improvements to enhance runway safety. This means that not all runways will have a standard runway safety area when the improvements are done. In FY-2007, 29 of 38 runway safety area improvements will meet standards when all practicable improvements are complete. RSA improvements can involve any combination of:

a. Constructing or expanding the RSA;

b. Modifying or relocating the runway;

c. Installing EMAS;

d. Implementing declared distances.

3.2. Another way an RSA can be “improved” to meet standards is when the design aircraft or approach visibilities change and the resulting standard dimensions decrease. For example, if the design aircraft for a runway with lower than 3/4-mile visibility changes from C-II to B-II, then the corresponding RSA length off the end of the runway decreases from 1,000 feet to 600 feet. However, in FY 2007, no priority runways are expected to reduce the standard RSA dimensions.

3.3. There are about 197 remaining runways where the FAA has placed a priority for completing all practicable improvements. Accordingly, a long-term completion and financial plan has been developed to complete the improvements for these runways as expeditiously as possible. The current plan is to complete these improvements by 2015. Remaining Airport Improvement Program (AIP) grant investments to support these improvements are estimated to be about $1 billion.

3.4. Not all runways can be improved to meet current RSA standards because of costs and other constraints. In fact, 17 runways nationally will not be improved at all because they are not practicable to improve. The reasons for this determination include:

a. The private airport sponsor is not eligible for AIP grants and does not support RSA improvements;

b. The airport is scheduled to close in the near future;
c. The RSA is already within 90% of the standard dimensions and the region has determined that further improvements are not warranted;

d. Environmental constraints;

e. The maximum feasible cost to improve the RSA has already been applied to improvements although more improvements might be possible with more funding.

3.5 The FAA, in cooperation with airport sponsors, has completed all practicable RSA improvements for 259 commercial service runways since 2000. The number of runways with an RSA complying with 100% of the standard increased from 30% in 2000 to 54% in 2006. RSAAs substantially meeting standards, defined as dimensions that are within 90% of the standard have increased from 55% in 2000 to 72% in 2006.

3.6 The plan also reveals that 42 RSA improvements will not be completed until after 2010. The FAA was hoping that all improvements would be complete by 2010; however, RSA improvements are often large and complex projects that may take several years to complete because of multiple critical factors:

a. Funding. The level of AIP funding to support the improvements at some airports and in some regions is much higher than normal and the schedule has been extended out to spread the costs over several years;

b. Alternatives Analysis and Environmental Review. Many improvement projects are complicated and require a careful review of various alternatives for their impact on airport operations and the surrounding community. Environmental review and in some cases an Environmental Impact Statement (EIS) is anticipated before final approval. This process can take several years depending upon how far along the airport sponsor is in the project planning and formulation process;

c. Project Management Resources. For some airports, planned RSA improvements involve several runways, each with major improvement needs. It is impossible for them to manage several RSA improvement projects while simultaneously working other needed capital improvements at the airport.

4. CONCLUSION

4.1 The FAA is undertaking an ambitious program for RSA improvements for priority runways at all commercial service airports. The program requires clear standards, goals and policies to define the problem and to provide guidance for implementing solutions. This program will require long-term diligence but will result in a runway system with a significantly improved margin of safety for the aircraft they serve.