FUTURE AVIATION FUELS

What are the challenges?
What are the options?

Mike Farmery
Global Fuel Technical and Quality Manager
Is Powerpoint slide production sustainable?

<table>
<thead>
<tr>
<th>Year</th>
<th>No of slides per presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: McKensey
GreenPoint™ confirm that > 70% of the following slides come from recycled sources

Geneva, April 2006

IATA FUEL FORUM
Lisbon, May 2006

Shell Aviation
Kerosine is a very good aviation turbine fuel

- Good cold flow characteristics
 - Viscosity
 - Freeze point
- Clean combustion, low luminosity
- Good energy density
- Good thermal stability
Aviation is a very special global industry
– but not much scope for special fuels

- Long lifetime and high capital cost of aircraft – kerosine is preferred jet fuel for next 30 years
- Focus on safety means lead times for fuel or additive development are long (~10 years)
- Airlines don’t like aircraft that need special fuel
- Little incentive for OEMs to develop aircraft/engines running on a special high performance or alternative fuel
- Local alternative fuel solutions common in ground transportation fuels only applicable to General Aviation
- Hydrogen would need completely new aircraft and infrastructure
Aviation is a very special global industry – but not much scope for special fuels

- Long lifetime and high capital cost of aircraft – kerosine is preferred jet fuel for next 30 years
- Focus on safety means lead times for fuel or additive development are long (~10 years)
- Airlines don’t like aircraft that need special fuel
- Little incentive for OEMs to develop aircraft/engines running on a special high performance or alternative fuel
- Local alternative fuel solutions common in ground transportation fuels only applicable to General Aviation
- Hydrogen would need completely new aircraft and infrastructure

Any new or alternative aviation fuel must be a drop-in replacement
The main challenges that future aviation fuels must address

- Reducing environmental impact of aviation
- Reducing operating costs
- Improving fuel availability and allowing diverse supply options
Future fuel challenges

- Improve supply security
 - Less dependence on crude
 - Understand competition with diesel
 - FT synthetics XTL
 - Additives
 - HT base fuel
 - Better thermal stability
 - Higher engine temps and pressures
 - Improve fuel efficiency

- Reduce op costs
 - Less dependence on crude

- Reduce Env impact
 - Low NOx combustors
 - Less soot
 - Reduce contrails, cirrus
 - Local air quality
 - Biomass
 - HT veg oil
 - Low cost bio to HC?

- New HC sources
 - Oxygenates veg oil, ethanol

- Shale tar sands

- BTL

- Gas, coal via FT

- Low cost bio to HC?

- HT veg oil

- Fuel efficiency

- Biomass

- Local air quality
Future fuel challenges

- Improve supply security
- Reduce operational costs
- Reduce environmental impact

- New HC sources
- Oxygenates veg oil, ethanol
- Biomass
- HT base fuel
- Additives
- Better thermal stability
- Higher engine temps and pressures
- Less dependence on crude
- FT synthetics XTL

- Understand competition with diesel
- New HC sources
- BTL
- Shale tar sands
- HT veg oil
- Low cost bio to HC?

- Reduce Env impact
- Fuel efficiency
- Less soot
- Local air quality
- Reduce contrails, cirrus

- Reduce CO2
- Biomass

- Gas, coal via FT

- Less dependence on crude
- Low NOx combustors

- Biomass
- Low cost bio to HC?

- Shale tar sands

- HT base fuel
- Better thermal stability
- Higher engine temps and pressures
- Less dependence on crude
Aviation’s is only 3% of man-made CO2 but its environmental impact is under the spotlight

Aviation’s impact estimated at 2.5x basic CO2 effect due to cirrus, contrails and NOx

EU wants to include Aviation in Emissions Trading

Local air quality is a major factor limiting Heathrow airport expansion – NO2 levels main issue but particulates also on the agenda
Future fuel challenges

- Improve supply security
 - Better competition with diesel
 - Less dependence on crude
- Reduce operating costs
 - FT synthetics XTL Additives
 - Better thermal stability
 - Higher engine temps and pressures
 - Improve fuel efficiency
 - Less dependence on crude
- Reduce environmental impact
 - More efficient fuel burn
 - Reduce CO2
 - Less soot
 - Reduced contrails, cirrus
 - Local air quality
- New HC sources
 - BTL Oxygenates
 - Veg oil, ethanol
- Biomass
 - Low cost bio to HC?
 - HT base fuel
- Gas, coal via FT
- Shale tar sands
- HT veg oil
- Additives
 - Low NOx combustors
Better thermal stability would allow engines to run hotter

<table>
<thead>
<tr>
<th>ENGINE FUEL CONSUMPTION</th>
<th>AIRCRAFT FUEL BURN PER SEAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet 4/ Avon</td>
<td>B747-100/DC-10</td>
</tr>
<tr>
<td>IT9D-3/RB211-524/CF-6</td>
<td>A340-300</td>
</tr>
<tr>
<td>B777-200</td>
<td>A310-300</td>
</tr>
<tr>
<td>B707-120/JT-3</td>
<td>B747-100/DC-10</td>
</tr>
<tr>
<td>JT9D-3/RB211-524/CF-6</td>
<td>Trent/GE90</td>
</tr>
<tr>
<td>PW4000</td>
<td>PW4000</td>
</tr>
</tbody>
</table>

20 deg C estimated to give 0.1% improvement in SFC

Inadequate thermal stability causes deposits and blockages in fuel systems

The engine equivalent of cholesterol

Current engines are pushing the thermal stability of both fuels and lubricants to the limit
We can improve thermal stability by processing and additives
Future fuel challenges

Improve supply security

- Less dependence on crude
 - Understand competition with diesel

- Better thermal stability
 - Higher engine temps
 - Higher engine pressures

Additives

- FT synthetics
- XTL

- HT base fuel

Biomass

- Oxygenates veg oil, ethanol

New HC sources

- Shale tar sands

- BTL

- Low cost bio to HC?

- HT veg oil

Reduce Env impact

- Low NOx combustors

- Local air quality

- Fuel efficiency

- Less soot

- Less contrails, cirrus

Reduce op costs

- Less dependence on crude

- Improve fuel efficiency

Destroy contrails, cirrus
Current automotive biofuels are oxygenates—either ethanol or FAME (veg oil)

- Oxygen content gives weight penalty with no benefit
- Resultant energy density is poor
- FAME characteristics depend on original vegetable oil
- Oxygen in fuel can be an advantage in diesel combustion but not in a gas turbine
- Significant engine and airframe issues – eg thermal stability and freeze point (+ corrosion for alcohols)
- May have applicability in bespoke local solutions, especially for piston engines eg ethanol in crop dusters in Brazil
Energy content, freeze pt are important

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Density kg/m³</th>
<th>Energy MJ/kg</th>
<th>Energy MJ/L</th>
<th>Freeze pt, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet A-1</td>
<td>800</td>
<td>43.2</td>
<td>34.8</td>
<td><-47</td>
</tr>
<tr>
<td>Ethanol</td>
<td>790</td>
<td>27.7</td>
<td>22.0</td>
<td><-115</td>
</tr>
<tr>
<td>FAME</td>
<td>880</td>
<td>37.5</td>
<td>33.0</td>
<td>-5</td>
</tr>
<tr>
<td>GTL kero</td>
<td>740</td>
<td>44.0</td>
<td>32.5</td>
<td><-50</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>70</td>
<td>120</td>
<td>8.4</td>
<td>-259!</td>
</tr>
</tbody>
</table>
HYDROTREATED VEGETABLE OIL
A better option for aviation than FAME

- Uses conventional type hydrotreating technology
- Removes oxygen, hence good energy density
- Kerosine produced is very similar to similar to GTL kero (low S, low aromatics)
- A number of processes proposed, driver is biodiesel
- Produces products across the distillate range
- Principal limit is the availability and cost of vegetable oils
The Synthetic Fuels continuum

- Identical products from gas, coal and biomass
- Flexible feedstock options
- Common development of advanced efficient engines

Natural Gas → GTL (Shell Gasification Process)
Biomass → BTL (Gasifier)
Coal → CTL (Shell Coal Gasification Process)

Syngas → Fischer-Tropsch process → Identical Products
Synthetic kerosine is great turbine fuel

- Better thermal stability - hotter engines
- Zero aromatics - reduced soot emissions
- Low luminosity flame - longer engine life
- Zero sulphur - engine life, emissions

![Graph showing Mass EI (g/kg fuel) for different engine power conditions. JP-5, Synthetic A, and Synthetic B are compared.](image-url)
US Military are leading the way on synthetics

- Performance benefits in military jet engines
- Less engine smoke (smoking effects your stealth)
- Less dependence on imported oil (big Government push)
- Good diesel fuel (single battlefield fuel)
- Suitable for fuel cells
- Based on coal (Appalachians don’t have hurricanes)
CO2 production well-to-wheel - GTL

- Industry consensus on LCA studies showing that the GHG emissions of a GTL system is comparable to a modern, complex refinery system, it also has:
 - significant lower impact on air acidification and smog formation
 - lower emissions of particulate matter
 - less hazardous waste production

- Considerable efforts are focused on GTL process efficiency through focused R&D programs, targeting up to 20% efficiency improvements

Shell sponsored life-cycle assessment by PricewaterhouseCoopers LLP in accordance with ISO14040 standards.
Planned GTL capacity

* Currently on hold
Sources: World Market Analysis/Global Insight, Gas Matters Today.
Current position with synthetics

• SASOL CTL iso-paraffinic kero approved up to 50% dilution in conventional kero (at JNB)
• SASOL going for approval of 100% fully synthetic kero using synthetic aromatics from same process
• Likely that specifications will allow FT iso-paraffinic kerosines up to a similar 50% provided certain conditions are met
• Low volumes will mean 50% approval adequate for short/medium term
• However, blends give supply benefit but generally don’t give performance benefit
Future fuel challenges

- Improve supply security
- FT synthetics
- XTL
- Additives
- Better thermal stability
- Higher engine temps and pressures
- Improve fuel efficiency
- Less dependence on crude
- Understand competition with diesel

Reduce op costs
- Less dependence on crude
- FT base fuel

Reduce Env impact
- Fuel efficiency
- Local air quality
- Biomass
- HT veg oil
- Low cost bio to HC?
- BTL
- Shale tar sands
- Low NOx combustors
- Less soot
- Reduce contrails, cirrus

Reduce CO2
- Biomass
- veg oil, ethanol
- Oxygenates
- New HC sources
- Gas, coal via FT

Gas, coal via FT
The fuel options map

ENABLE ENGINE PERFORMANCE IMPROVEMENT

INCREASE OR DIVERSIFY SUPPLY

HT fuels
Additives eg APA 101

GTL CTL*

Tar sands
Shale oil

BTL ???

HT veg oil

Ethanol** veg oils**

REDUCE CO2

* Needs CO2 sequestration

** negative performance due to poor energy density
BTL kero – the future is green?

Better thermal stability – hotter engines
Zero aromatics – reduced soot emissions
Low luminosity flame – longer engine life
Improved supply – new molecules
Reduced CO2 footprint – renewable

BUT........

Not all benefits blend
VeryHigh cost of production plants
Availability of biomass
Transport of biomass

Need a low cost biomass to hydrocarbon route
Summary

• Simple bio-extenders (FAMEs, ethanol) not attractive for aviation

• CTL and GTL kero offer performance benefits plus new molecules (but remember neat/blended issue). Need to find solution to CO2 esp for CTL (sequestration)

• BTL offers the benefits of synthetic kero with a CO2 bonus

• Synthetics (esp BTL) will require major investment to produce significant volumes

• Other bio-options (HT veg oils) attractive but not proven

• Supply of biomass will be a major challenge – aviation is not the only game in town

• The Holy Grail is a low cost biomass to hydrocarbon process
Any Questions?