

EGNOS TUTORIAL

Research group of Astronomy and GEomatics (gAGE/UPC)

Universitat Politècnica de Catalunya e-mail: jaume@mat.upc.es http://gage1.upc.es

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

gAGE

- Part I: The EGNOS system
 - Augmentation Systems
 - EGNOS System Architecture
- Part II: Data Processing
 - SBAS Differential Corrections and Integrity
 - Performance
 - Examples
- Part III: EGNOS and Civil Aviation
 - Introduction to Civil Aviation Navigation
 - The EGNOS benefits

PART I The EGNOS System

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

gAGE

- To enhance the performance of the current GNSS with additional information to:
 - Improve INTEGRITY via real-time monitoring
 - Improve ACCURACY via differential corrections
 - Improve AVAILABILITY and CONTINUITY
- Satellite Based Augmentation Systems (SBAS)
 - E.g., WAAS, **EGNOS**, MSAS
- Ground Based Augmentation Systems (GBAS)
 - E.g., LAAS
- Aircraft Based Augmentation (ABAS)
 - E.g., RAIM, Inertials, Baro Altimeter

gAGE

Why Augmentation Systems?

- Current GPS/GLONASS Navigation Systems cannot met the Requirements for All Phases of Flight:
 - Accuracy
 - Integrity
 - Continuity
 - Availability

• Marine and land users will also require some sort of augmentation for improving the GPS/ GLONASS performances.

gAGE

(10⁻⁶ / 15 s)

gAGE

Accuracy: Difference between the measured position at any given time to the actual or true position.

Even with S/A off a Vertical Accuracy< 4m 95% of time cannot be achieved with standalone GPS.

GAGE

Integrity: Ability of a system to provide timely warnings to users or to shut itself down when it should not be used for navigation.

Standalone GPS and GLONAS Integrity is Not Guaranteed

GPS/GLONASS Satellites:

- Time to alarm is from minutes to hours
- No indication of quality of service

Health Messages:

- GPS up to 2 hours late
- GLONASS up to 16 hours late

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

Continuity: Ability of a system to perform its function without (unpredicted) interruptions during the intended operation.

Availability: Ability of a system to perform its function at initiation of intended operation. System availability is the percentage of time that accuracy, integrity and continuity requirements are met.

Availability and Continuity Must meet requirements

• Continuity:

Less than 10⁻⁵ Chance of Aborting a Procedure Once it is Initiated.

• Availability:

>99% for every phase of flight (SARPS).

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

EGNOS Tutorial. Barcelona, February 2003

• $< 10^{-5}$ Chance of Aborting a Procedure Once it is Initiated.

Threshold alarm

Time to alarm 6 s

Alarm Delay

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

Aviation Signal-in-Space Performance Requirements

Aviation	Accuracy (H) 95%	Accuracy (V) 95%	Alert Limit (H)	Alert Limit (V)	Integrity	Time to alert	Continuity	Avail- ability
ENR	3.7 Km (2.0 NM)	N/A	7400 m 3700 m 1850 m	N/A	1-10 ⁻⁷ /h	5 min.	1-10 ⁻⁴ /h to 1-10 ⁻⁸ /h	0.99 to 0.999999
ТМА	0.74 Km (0.4 NM)	N/A	1850 m	N/A	1-10 ⁻⁷ /h	15 s	1-10 ⁻⁴ /h to 1-10 ⁻⁸ /h	0.999 to 0.99999
NPA	220 m (720 ft)	N/A	600 m	N/A	1-10-7/h	10 s	1-10-4/h to 1-10-8/h	0.99 to 0.999999
APV-I	220 m (720 ft)	20 m (66 ft)	600 m	50 m	1-2x10-7 per approach	10 s	1-8x10-6 in any 15 s	0.99 to 0.999999
APV-II	16.0 m (52 ft)	8.0 m (26 ft)	40 m	20 m	1-2x10-7 per approach	6 s	1-8x10-6 in any 15 s	0.99 to 0.999999
CAT-I	16.0 m (52 ft)	6.0 - 4.0 m (20 to 13 ft)	40 m	15 -10 m	1-2x10-7 per approach	6 s	1-8x10-6 in any 15 s	0.99 to 0.99999

Maritime Signal-in-Space Performance Requirements

Maritime	Accuracy (H) 95%	Alert Limit (H)	Time to alert	Integrity risk (per 3 hours)
Ocean	10m	25m	10sec	10 ⁻⁵
Costal	10m	25m	10 s	10 ⁻⁵
Port approach and restricted waters	10m	25m	10 s	10⁻⁵
Port	1m	2.5m	10 s	10 ⁻⁵
Inland waterways	10m	25m	10 s	10 ⁻⁵

- Most of the measurement errors are common: clock, ephemeris, ionosphere and troposphere.
- A common correction valid for any receiver within the LADGPS area is generated and broadcast.
- The accuracy is limited by the spatial decorrelation of those error sources (1m at 100Km).

UPC

Differential Correction Calculation

- The first receiver in a reference station can calculate these errors knowing its exact location (corrections "PRC" calculated by the GBAS ground station): PRC= PR_{ref} ρ_{ref}
- The second receiver (the user) will use these corrections to correct its own measurements and increase the accuracy of these measurements: PR_{user}- PRC

Noise

Uncorrelated

Noise

ERORS on the Signal

- research **g**roup of **A**stronomy and **Ge**omatics **gAGE**
- Space Segment Errors:
 - Clock errors
 - Ephemeris errors
- Propagation Errors
 - Ionospheric delay
 - Tropospheric delay
- Local Errors
 - Multipath
 - Receiver noise

With SA set to Zero, the dominant error is now the error associated with the Ionosphere.

- The ionosphere can add a significant amount of error to a user's position solution
- Based on several factors:
 - geographic location
 - time of day
 - time with respect to the solar cycle (11 years).

The pseurorange error is split in its components.

- Clock error
- Ephemeris error
- Ionospheric error
- Local errors (troposphere, multipath, receiver noise)

Uses a network of receivers to cover broad geographic area

UPC

Error component	GBAS	SBAS	
Satellite clock		Estimation and	
Ephemeris	Common Mode	Removal each error	
Ionosphere	Differencing	component	
Troposphere		Fixed Model	
Multipath and Receiver Noise	Carrier Smoothing by user		

gAGE

The European Geoestationary Navigation Overlay SERVICE (EGNOS)

- EGNOS is the European component of a Satellite Based Augmentation to GPS and GLONAS.
- EGNOS is being developed under the responsibility of a tripartite group:
 - The European Space Agency (ESA)
 - The European Organization for the Safety of Air Navigation (EUROCONTROL)
 - The Commission of the European Union.

Three existing SBAS Systems

ECAC Area (ECAC: European Civil Aviation Conference)

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

UPC

research group of Astronomy and Geomatics

gAGE

Latitude (°)

(AOC: Avanced Operational Capability)

EGNOS AOC GROUND NETWORK TOPOLOGY

RIMS for a good GEO RANGING

RIMS in ECAC

GAGE

33 RIMS in EGNOS +1 specific RIMS for UTC time

gAGE

- MCC is Subdivided into
 - CCF (Central Control Facility)
 - Monitoring and control EGNOS G/S
 - Mission Monitoring and archive
 - ATC I/F
 - CPF (Central Processing Facility)
 - Provides EGNOS WAD corrections
 - Ensures the Integrity of the EGNOS users
 - Utilises independent RIMS channels for checking of corrections
 - Real time software system developed to high software standards
- 4 MCCs will be implemented in EGNOS

gAGE

CCF VIEWS

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

UPC

Navigation Land Earth Station (NLES)

Uplink the EGNOS message with the GEO ranging signal to GEO.

- Generate GPS-like signal and transmit it to GEO transponder.
- Maintaining synchronization of the message with GPS time.

CPF

CCF

Geostationary satellite Broadcast Areas (GBA)

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

UPC

research **g**roup of **A**stronomy and **Ge**omatics

gAGE

research group of Astronomy and Geomatics

gAGE

EGNOS Wide Area Network (EWAN)

Function

Links all EGNOS components Link types:

MCC-MCC
 High capacity
 EWAN's backbone

MCC-NLES
 Ensures link with GEO's

MCC-RIMS
 Frame Relay or VSAT

UPC

research group of Astronomy and Geomatics

gAGE

- Under ESA Contract, European industry has set-up an EGNOS test bed (fully operational since Feb. 2000) . The ESTB is a full-scale real-time prototype of the final EGNOS system.
- ESTB main objectives are:
 - to have an assessment of the global performance achievable with EGNOS
 - to analyze in depth specific critical design issues or trade-off's between several options
 - to develop and validate system test methods
 - to demonstrate to the final users the system operation,
 - to provide a representative tool for Civil Aviations to build up SBAS practical experience

research group of Astronomy and Geomatics

gAGE

EGNOS Operational Milestones

- Aviation, maritime navigation, Railways.
- Road community: car navigation, fleet management, road pricing, autonomous vehicle guidance, etc.
- Timing and telecommunications: synchronization of internet nodes; synchronization of mobile base stations, etc.
- Agriculture: precision farming, GIS applications, automation of mobile agriculture, etc).
- Many others: fishery, search and rescue, land surveying, meteorology, land survey, leisure, etc.

PART II

Data Processing

DATA PROCESSING

Navigation equations and SBAS Differential Corrections and Integrity

•Pseudorange modeling

$$P_i^{\ j} = \rho_i^{\ j} + c \cdot (dt_i - dt^{\ j}) + \sum \delta_k$$
 travel to

Taylor linearization of
$$\rho$$
:

$$\rho_{i}^{j} = \sqrt{\left(x_{i} - x^{j}\right)^{2} + \left(y_{i} - y^{j}\right)^{2} + \left(z_{i} - z^{j}\right)^{2}} \approx \rho_{i_{0}}^{j} + \frac{x_{i_{0}} - x^{j}}{\rho_{i_{0}}^{j}} \Delta x_{i} + \frac{y_{i_{0}} - y^{j}}{\rho_{i_{0}}^{j}} \Delta y_{i} + \frac{z_{i_{0}} - z^{j}}{\rho_{i_{0}}^{j}} \Delta x_{i} + \frac{y_{i_{0}} - y^{j}}{\rho_{i_{0}}^{j}} \Delta z_{i}}$$

$$P_{i}^{j} \approx \rho_{i_{0}}^{j} + \frac{x_{i_{0}} - x^{j}}{\rho_{i_{0}}^{j}} \Delta x_{i} + \frac{y_{i_{0}} - y^{j}}{\rho_{i_{0}}^{j}} \Delta y_{i} + \frac{z_{i_{0}} - z^{j}}{\rho_{i_{0}}^{j}} \Delta z_{i} + \mathcal{C}(dt_{i} - dt^{j}) + \sum \delta_{k}$$

$$x_{i} = x_{i_{0}} + \Delta x_{i} \quad ; \quad y_{i} = y_{i_{0}} + \Delta y_{i} \quad ; \quad z_{i} = z_{i_{0}} + \Delta z_{i}$$
• Navigation Equations System:
$$\left[\frac{P_{i}^{l} - \rho_{i_{0}}^{l} + dt^{l} - \sum \delta_{k}^{l}}{P_{i}^{2} - \rho_{i_{0}}^{2}} + \frac{y_{i_{0}} - y^{l}}{\rho_{i_{0}}^{2}} + \frac{z_{i_{0}} - z^{l}}{\rho_{i_{0}}^{2}} - \frac{z_{i_{0}} - z^{l}}{$$

$$Y = G \cdot X$$

$$\widehat{X} = (G^T W G)^{-1} G^T W Y$$
where
$$\begin{bmatrix} \Delta x_i \\ \Delta y_i \\ \Delta z_i \\ cdt_i \end{bmatrix}$$

$$G^{j} = \left[\frac{x_{i_0} - x^{j}}{\rho_{i_o}^{j}}, \frac{y_{i_0} - y^{j}}{\rho_{i_o}^{j}}, \frac{z_{i_0} - z^{j}}{\rho_{i_o}^{j}}, 1\right] \longrightarrow X = \begin{bmatrix}\Delta x_i \\ \Delta y_i \\ \Delta z_i \\ cdt_i \end{bmatrix}$$

$$G^{j} = \left[\cos E l_{i}^{j} \cos A z_{i}^{j}, \cos E l_{i}^{j} \sin A z_{i}^{j}, \sin E l_{i}^{j}, 1\right]$$

$$\begin{bmatrix} cdt \\ i \end{bmatrix}$$

$$X = \begin{bmatrix} \Delta N_i \\ \Delta E_i \\ \Delta U_i \\ cdt_i \end{bmatrix}$$

Users know the receiver-satellites geometry and can compute bounds on the horizontal and vertical position errors.

These bounds are called Protection Levels (HPL and VPL). They provide good confidence (10^{-7} /hour probability) that the true position is within a bubble around the computed position.

research group of Astronomy and Geomatics

gAGE

Fast and Long-Term Correction Degradation

Degradation of Ionospheric Corrections

$$\sigma_{UIRE}^{2} = F_{pp}^{2} \sigma_{UIVE}^{2}$$

$$F_{pp} = \left[1 - \left(\frac{R_{e} \cos E}{R_{e} + h_{l}}\right)^{2}\right]^{\frac{1}{2}}$$

$$\sigma_{UIVE}^{2} = \sum_{n=1}^{N} W_{n}\left(x_{pp}, y_{pp}\right) \sigma_{n,ionogrid}^{2}, \quad N = 4 \text{ or } 3$$

$$\left[\left(\sigma_{n} + \varepsilon_{n}\right)^{2} \text{ if } RSS = 0 \quad (MT10)\right]$$

$$MT10$$

$$B_{rrc}, C_{ltc_lsb}, C_{ltc_v1}, I_{ltc_v0}, I$$

$$\sigma^{2}_{ionogrid} = \begin{cases} (\sigma_{GIVE} + \varepsilon_{iono})^{2}, if RSS_{iono} = 0 \quad (MT10) \\ \sigma^{2}_{GIVE} + \varepsilon^{2}_{iono}, if RSS_{iono} = 1 \quad (MT10) \end{cases} \qquad I_{ltc_v1}, C_{ltc_v0}, I_{ltc_v0}, C_{er}, RSS_{UDRE}, C_{iono_ramp}, C_{iono_step}, I_{iono}, RSS_{iono} \end{cases}$$

$$\varepsilon_{iono} = C_{iono_step} floor(\frac{t-t_{iono}}{I_{iono}}) + C_{iono_ramp}(t-t_{iono}) \qquad \mathsf{MT26}$$

$$t_{iono}, GIVE_{i}$$

SBAS Differential Corrections and Integrity:

The RTCA/MOPS

Message Format

The corrections, even for individual satellites are distributed across several individual messages.

- 250 bits
- One Message per second
- All messages have identical format

EGNOS Broadcast Messages (ICAO SARPS)

MSG 0	Don't use this SBAS signal for anything (for SBAS testing)								
MSG 1	PRN Mask assignments, set up to 51 of 210 bits								
MSG 2 to 5	Fast corrections								
MSG 6	ntegrity information								
MSG 7	Fast correction degradation factor								
MSG 8	Reserved for future messages								
MSG 9	GEO navigation message (X, Y, Z, time, etc.)								
MSG 10	Degradation Parameters								
MSG 11	Reserved for future messages								
MSG 12	SBAS Network Time/UTC offset parameters								
MSG 13 to 16	Reserved for future messages Many Message Types								
MSG 17	GEO satellite almanacs								
MSG 18	Ionospheric grid point masks								
MSG 19 to 23	Reserved for future messages ISSUES Data (IOD)								
MSG 24	Mixed fast corrections/long term satellite error corrections								
MSG 25	Long term satellite error corrections								
MSG 26	Ionospheric delay corrections								
MSG 27	SBAS outside service volume degradation								
MSG 28 to 61	Reserved for future messages								
MSG 62	Internal Test Message								
MSG 63	Null Message								

Issues of Data (IOD)

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

UPC

research group of Astronomy and Geomatics

gAGE

research **g**roup of **A**stronomy and **Ge**omatics

GAGE

Users can operate even when missing Messages

- Prevents Use of Very Old Data
- Confidence Degrades When Data is Lost
- IODF: Detect Missing Fast Corrections

Data	AssociatedMaximumEn RoMessageUpdate IntervalTerminalTypes(seconds)Timeout (seconds)		En Route, Terminal, NPA Timeout (seconds)	Precision Approach Timeout (seconds)	
WAAS in Test Mode	0	6	N/A	N/A	
PRN Mask	1	60 None		None	
UDREI	2-6, 24	6	18	12	
Fast Corrections	2-5, 24	60	(*)	(*)	
Long Term Corrections	24, 25	120	360	240	
GEO Nav. Data	9 120 360		360	240	
Fast Correction Degradation	7	120	360	240	
Weighting Factors	8	120	240	240	
Degradation Parameters	10	120	360	240	
Ionospheric Grid Mask	18	300	None	None	
Ionospheric Corrections	26	300	600	600	
UTC Timing Data	12	300	None	None	
Almanac Data	17	300	None	None	
(*) Fast Corre	ction Time-Out	intervals are giver	n in MT7 [between 1	.2 to 120 sec]	

Bit No	1	2	3	4	5	6	•	38	•	120	•	210
Value	0	1	0	1	1	0		1		1		0
PRN		GPS PRN 2		GPS PRN 4	GPS PRN 5			GLONASS Slot 1		AORE PRN 120		
PRN mask Number		1		2	3			21		29		

Each MT01 contains its associated IODP

Up to 51 satellites in 210 slots.

Note: Each Correction set in MT 2-5,5,6,7,24,25 its characterized by its PRN-Mask number, between 1 to 51.

	Assignment
PRN Slot	
1-37	GPS/GPS Reserved
38-61	GLONASS
62-119	Future GNSS
120-138	GEO/SBAS
139-210	Future GNSS/GEO/SBAS/Pseudolites

- Primarily Removes SA
 - Common to ALL users
 - Up to 13 Satellites Per Message
 - Pseudorange Correction /confidence Bound
 - Range Rate Formed by Differencing
 - UDRE degrades Over Time
 - Acceleration Term in MT 7
 - Reset when new Message Received

Fast Corrections (MT2-5)

research group of Astronomy and Geomatics

• Serves Two Purposes

Alarm conditions are indicated with IODF=3

- Alarm for Multiple Satellites
 - Includes UDREs for all 51 Satellites
- Update UDRE in Between Fast Corrections
 - More efficient Use of Bandwidth
 - The receipt of MT6 with matching IODF<3 is equivalent to another reception of last fast correction.

Evaluation of UDREI

UDREI _i	UDRE _i Meters	$\sigma^{2}_{i,UDRE}$ Meters ²		
0	0.75	0.0520		
1	1.0	0.0924		
2	1.25	0.1444		
3	1.75	0.2830		
4	2.25	0.4678		
5	3.0	0.8315		
6	3.75	1.2992		
7	4.5	1.8709		
8	5.25	2.5465		
9	6.0	3.3260		
10	7.5	5.1968		
11	15.0	20.7870		
12	50.0	230.9661		
13	150.0	2078.695		
14	Not Monitored	Not Monitored		
15	Do Not Use	Do Not Use		

Comment:

- With SA=off, the FC can be sent less frequently than 6sec, but it is still necessary to update the "integrity status (UDREs)" at the high rate.
- Prec. App: UDRE time-out =12sec

FC time-out between 12 -120 sec.

The MOPS (RTCA Do 229A) 2.1.1.5.2, establish the satellites deselecting for:							
-UDRE=14 (not monitored)							
and							
-UDRE=15 (don't use)							
2.1.4.7.1: In addition, for							
Precision Approach: UDRE<11.							

UDRE degradation: The fast correction was estimated by master station at some previous time t_n - t_{lat}

EXAMPLE 1

(From WAAS MOPS: Practical Examples. Todd Walter)

Time (sec) t	Last Mess. Time (s) tn	Last Mess PRC _n (m)	Last Mess. IODF _n	PRC(t) (m)	RRC _n	Error (m)	σ ² flt	σ ² udre	€ ² fc	E ² rrc
0	-1	0.500	0	-	-		-	-	-	-
3	-1	0.500	0	-	-		-	-	-	-
6	5	-2.125	1	-2.563	-0.4375	0.505	0.0957	0.0924	0.0033	0
9	5	-2.125	1	-3.875	-0.4375	1.045	0.1141	0.0924	0.0217	0
12	11	-3.125	2	-3.292	-0.1667	-0.140	0.0957	0.0924	0.0033	0
15	11	-3.125	2	-3.792	-0.1667	-0.171	0.1141	0.0924	0.0217	0
18	17	-4.000	0	-4.146	-0.1458	0.238	0.0957	0.0924	0.0033	0
21	17	-4.000	0	-4.583	-0.1458	0.373	0.1141	0.0924	0.0217	0
24	17	-4.000	0	-5.021	-0.1458	0.893	0.1699	0.0924	0.0775	0
27	17	-4.000	0	-5.458	-0.1458	1.584	0.2954	0.0924	0.2030	0
30	29	-3.500	2	-3.458	0.0417	0.008	0.0964	0.0924	0.0033	0.00069
33	29	-3.500	2	-3.333	-0.0417	0.479	0.1252	0.0924	0.0217	0.01111
36	35	-2.750	0	-2.625	0.1250	0.537	0.0957	0.0924	0.0033	0
39	35	-2.750	0	-2.250	0.1250	1.100	0.1141	0.0924	0.0217	0

FC update rate 6 sec

Param	Mes. Type	value		Param	Mes. Type	value
σ ² UDRE (m2)	MT 2	0.0924		t _{lat} (sec)	MT 7	4
a (mm/s2)	MT 7	4.60		B _{rrc} (m)	MT10	0.15
I _{fc} (sec)	MT 7	12		RSS _{UDRE}	MT10	1

Time (sec) t	Last Mess. Time (s) tn	Last Mess PRC _n (m)	Last Mess. IODF _n	PRC(t) (m)	RRC _n	Error (m)	σ^2_{flt}	σ ² UDRE	€ ² fc	E ² rrc	
0	-1	0.500	0	-	-		-	-	-	-	
3	-1	0.500	0		-		-	-		-	
6	5	-2.125		-2 563	0.4375	0.505	0.0957	0.0924	0.0033	0	
9	5	-2.125	1	-3.875	-0.4375	1.045	0.1141	0.0924	0.0217	0	
12	11	-3.125	2	-3.292	-0.1667	-0.140	0.0957	0.0924	0.0033	0	
15	11	-3.125	2	-3.792	-0.1667	-0.171	0.1141	0.0924	0.0217	0	
18	17	-4.000	0	-4.146	-0.1458	0.238	0.0957	0.0924	0.0033	0	
21	17	-4.000	0	-4.583	-0.1458	0.373	0.1141	0.0924	0.0217	0	
24	17	-4.050	0	-5.021	-0.1458	0.893	0.1699	0.0924	0.0775	0	
27	17	-4.000	0	-5.458	-0.1458	1.584	0.2954	0.0924	0.2030	0	
30	29	-3.500	2	-3.458	0.0417	0.008	0 0964	0.0924	0.0033	0.00069	
33	29	-3.500	2	-3.333	-0.0417	0.479	0.1252	0.0924	0.0217	0.01111	
36	35	-2.750	0	-2.625	0.1250	0.537	0.0957	0.0924	0.0033	0	
39	35	-2.750	0	-2.250	0.1250	1.100	0.1141	0.0924	0.0217	0	
$PRC(t) = PRC_n + RRC_n(t - t_n) \qquad \sigma_{i,flt} = \sigma_{UDRE} + \mathcal{E}_{fc} + \mathcal{E}_{mc} + \mathcal{E}_{ltc} + \mathcal{E}_{er}$											
RRC	$a_{i} = \frac{1}{2} \frac{1}{1} \frac{1}$	$t_n - t_o$	<u> </u>	ε	$\varepsilon_{fc} \equiv \frac{a}{2} \left(t - t_n + t_{lat} \right)^2$			$\varepsilon_{rrc} \equiv \left(\frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_{a} - t_{a}}\right) (t - t_{n})$			
RRC T	ime – Out		<i>Ifc=</i> 12sec	_				c _0 wh	en no more	are missed	
$\Delta t = t_n$	$-t_o > I_{fc}$	PRC T	'ime – Out		UDRE Ti	me-Out					
$t-t_n >$	$8\Delta t$	$t-t_n > $	$I_{fc} + 1$		t-t _n >	13					

Time (sec)	Last Mess.	Last Mess	Last Mess.	PRC(t)	RRC	Frror	σ^{2}_{flt}	σ^2_{UDRE}	ε^{2} fc	ε ² rrc	
t	Time (s) tn	PRC _n (m)	IODF _n	(m)		(m)					
0	-1	0.500	0	-	-		-	-	-	-	
3	-1	0.500	0	-	-		-	-	-	-	
6	5	-2.125	1	-2.563	-0.4375	0.505	0.0957	0.0924	0.0033	0	
9	5	-2.125	-	-3.875	-0.4375	1.045	0.1141	0.0924	0.0217	0	
12	11	-3.125	2	-3.292	-0.1667	-0.140	0.0957	0.0924	0.0033	0	
15	11	-3.125	2	-3.792	-0.1667	-0.171	0.1141	0.0924	0.0217	0	
18	17	-4.000	0	-4.146	-0.1458	0.238	0.0957	0.0924	0.0033	0	
21	17	-4.000	0	-4.583	-0.1458	0.373	0.1141	0.0924	0.0217	0	
24	17	-4.000	0	-5.021	-0.1458	0.893	0.1699	0.0924	0.0775	0	
27	17	-4.000	0	-5.458	-0.1458	1.584	0.2954	0.0924	0.2030	>> 0	
30	29	-3.500	2	-3.458	0.0417	0.008	0.0964	0.0924	0.0033	0.00069	
33	29	-3.500	2	-3.333	-0.0417	0.479	0.1252	0.0924	0.0217	0.01111	
36	35	-2.750	0	-2.625	0.1250	0.537	0.0957	0.0924	0.0033	0	
39	35	-2.750	0	-2.250	0.1250	1.100	0.1141	0.0924	0.0217	0	
PRC ((t) = PR	$C_n + RR$	$2C_n(t-t)$	$\binom{t_n}{n}$	$\sigma_{i,flt} = C$	F UDRE+	$\hat{\mathcal{E}}_{fc}+\hat{\mathcal{E}}_{rr}$	$c + \mathcal{E}^{2}_{ltc} + \mathcal{E}^{2}_{ltc}$	c ² er		
RRC	$_PRC$	$C_n - PRC$	ר 6					(•	1	
	,	$t_n - t_o$		٤	$\mathcal{F}_{fc} \equiv \frac{a}{2} (t)$	$-t_n + t_n$	$_{lat})^2$	$\varepsilon_{rrc} \equiv \left(\frac{a I_{fc}}{4} + \frac{B_{rrc}}{t - t}\right) \left(t - t_n\right)$			
RRC T	'ime – Out		<i>Ifc=</i> 12sec	_			_		n		
$\Delta t = t_n$	$-t_o > I_{fc}$	PRC T	'ime – Out	ț.	UDRE Ti	me-Out	t	ε _{rrc} =0 wh	en no mess	are missed	
$t-t_n >$	$8\Delta t$	$t-t_n > $	$I_{fc} + 1$		t-t _n >	•13					

Time (sec) t	Last Mess. Time (s) tn	Last Mess PRC _n (m)	Last Mess. IODF _n	PRC(t) (m)	RRC _n	Error (m)	σ^2_{flt}	σ ² udre	€ ² fc	^{E²rrc}	
0	-1	0.500	0	-	-		-	-	-	-	
3	-1	0.500	0	- Th	e IODEs ar	e not in		-	-	-	
6	5	-2.125	1	-2.5 sea	quence and	the use	r is 57	0.0924	0.0033	0	
9	5	-2.125	1	-3.8 aw	are that a	FC is mis	sing. 41	0.0924	0.0217	0	
12	11	-3.125	2	-3.2 RR	C is forme	d using I	DDFs 57	0.0924	0.0033	0	
15	11	-3.125	2	-3.7 OU	t of sequer	se => 8	rrc ⁴¹	0.0924	0.0217	0	
18	17	-4.000		-4.146	-0.1458	0.238	0.0957	0.0924	0.0033	0	
21	17	-4.000	0	-4.583	-0.1458	0.373	0.1141	0.0924	0.0217	0	
24	17	-4.000	0	-5.021	-0.1458	0.893	0.1699	0.0924	0.0775	0	
27	17	-4.000	0	-5.458	-0.1458	1.584	0.2954	0.0924	0.2030	0	
30	29	-3.500	2	-3.458	0.0417	0.008	0.0964	0.0924	0.0033	0.00069	
33	29	-3.500	2	-3.333	-0.0417	0.479	0.1252	0.0924	0.0217	0.01111	
36	35	-2.750	0	-2.625	0.1250	0.537	0.0957	0.0924	0.0033	0	
39	35	-2.750	0	-2.250	0.1250	1.100	0.1141	0.0924	0.0217	0	
PRC ((t) = PR PRC	$C_n + RR$ $C_n - PRC$	$RC_n(t-t)$	$\binom{t_n}{n}$	$\mathbf{r}_{i,flt}^{2} = \mathbf{C}$	UDRE +	$\mathcal{E}_{fc}^{2}+\mathcal{E}_{fc}^{2}$	$rrc + \mathcal{E}_{ltc} + \mathcal{E}_{ltc}$	f ² ar		
KKC _n		$t_n - t_o$	<u> </u>	Е	$\varepsilon_{fc} \equiv \frac{a}{2} \left(t - t_n + t_{lat} \right)^2 \qquad \varepsilon_{rrc} \equiv \left(\frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{t_n - t_c} \right) \left(t - \frac{a I_{fc}}{t_n$						
$\Delta t = t_n$ $t - t_n >$	$ime - Out$ $-t_o > I_{fc}$ $8\Delta t$	$\frac{PRC}{t-t_n}$	Ifc=12sec Time – Out I _{fc} +1		UDRE Time-Out t-t _n >13				€ _{rrc} =0 when no mess. are missed		

n

EXAMPLE 2

(From WAAS MOPS: Practical Examples. Todd Walter)
$\boldsymbol{\sigma}_{i,flt}^{2} = \boldsymbol{\sigma}_{UDRE}^{2} + \boldsymbol{\mathcal{E}}_{fc}^{2} + \boldsymbol{\mathcal{E}}_{mc}^{2} + \boldsymbol{\mathcal{E}}_{ltc}^{2} + \boldsymbol{\mathcal{E}}_{er}^{2}$

Time (sec)	Last Mes Time (s)	Last Mess Type	Last Mes IODF	t _{UDRE}	σ^2_{flt}	σ^2_{UDRE}	€ ² fc	ε ² rrc	$\mathcal{E}_{fc} \equiv$
0	-1	2	0	-1	0.052014	0.0520	0.000014	0	£ =
6	5	6	0	5	0.052014	0.0520	0.000014	0	$v_{rrc} =$
12	11	6	0	11	0.052014	0.0520	0.000014	0	
18	17	6	0	17	0.092414	0.0924	0.000014	0	
24	23	6	0	23	0.092414	0.0924	0.000014	0	ε _{rrc} =
30	29	2	1	29	0.052014	0.0520	0.000014	0	mess
36	35	6	1	35	0.052014	0.0520	0.000014	0	
42	41	6	1	41	0.052014	0.0520	0.000014	0	
48	47	-	-	41	0.052329	0.0520	0.000329	0	
54	53	6	1	53	0.092414	0.0924	0.000014	0	
60	59		-	53	0.092729	0.0924	0.000329	0	
66	65	6	2	53	0.094297	0.0924	0.001897	0	Parar
72	71	6	2	53	0.092696	0.0924	0.006296	0	
78	77	6	2	53	0.108310	0.0924	0.015910	0	$\sigma^2_{\mu\mu}$
84	83	6	2	53	0.430000	0.0924	0.337600	0	(m2)
90	89	2	0	89	0.052074	0.0520	0.000014	0.000060	a
96	95	6	0	95	0.054732	0.0520	0.000014	0.002720	(mm/s
102	101	6	0	101	0.061394	0.0520	0.000014	0.009380	I. (se
108	107	6	0	107	0.122814	0.0924	0.000014	0.030400	
114	113	6	0	113	0.027104	0.0924	0.000014	0.034690	t _/ (se
120	119	2	1	119	0.052014	0.0520	0.000014	0	$B_{rrc}(t)$
126	125	6	1	125	0.052014	0.0520	0.000014	0	
132	131	6	1	131	0.052014	0.0520	0.000014	0	KSS _{UL}
138	137	6	3	119	0.092696	0.0924	0.006296	0	
144	143	6	3	119	0.108310	0.0924	0.015910	0	MI 2 L
150	149	2	2	149	0.052014	0.0520	0.000014	0	MT 6 ι

 $\varepsilon_{fc} \equiv \frac{a}{2} \left(t - t_{UDRE} + t_{lat} \right)^{2}$ $\varepsilon_{rrc} \equiv \left(\frac{a I_{fc}}{4} + \frac{B_{rrc}}{t_{n} - t_{o}} \right) \left(t - t_{n} \right)$

ε_{rrc}=0 when no messages are missed

Param	Mes. Type	value
σ ² UDRE (m2)	MT 2,6	0.0520 0.0924
a (mm/s2)	MT 7	0.30
I_{fc} (sec)	MT 7	66
t _i (sec)	MT 7	4
B _{rrc} (m)	MT10	0.15
RSS _{UDRE}	MT10	1

MT 2 update rate 30 sec MT 6 update rate 6 sec

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

UPC

					$\sigma^2_{i flt} =$	$\sigma^2 IDPF + 2$	$e^2_{fa} + e^2_{rm}$	$+\mathcal{E}_{ltc}^{2}+\mathcal{E}_{ac}^{2}$	
Time t (s)	Last Mes t2, t6 (s)	Last Mess Type	Last Mes IODF	t _{UDRE}	σ_{flt}^2	σ^2_{UDRE}	\mathcal{E}^{2}_{fc}	ε^2_{rrc}	$\varepsilon_{fc} \equiv \frac{a}{2} \left(t - t_{UDRE} + t_{lat} \right)^2$
0	-1	(2)	0	-1	0.052014	0.0520	0.000014	0	$a I_{fc} = B_{rrc}$
6	5	6	0	5	0.052014	0.0520	0.000014	0	$\mathcal{E}_{rrc} = \left(\frac{1}{4} + \frac{1}{t_n - t_o}\right) (l - l_n)$
12	11	6	8	11	0.052014	0.0520	0.000014	0	
18	17	6	0	17	0.092414	0.0924	0.000014	0	
24	23	6	0	23	0.092414	0.0924	0.000014	0	The receipt of MT 6 (with
30	29	(2)	1	29	0.052014	0.0520	0.000014	0	to another recention of
36	35	6	1	35	0.052014	0.0520	0.000014	0	last fast correction
42	41	6	1	41	0.052014	0.0520	0.000014	0	
48	47	-	-	41	0.052329	0.0520	0.000329	0	
54	53	6	1	53	8 092414	0.0924	0.000014	0	UDRE Time-Out
60	59	-	-	53	0.092729	0.0924	0.000329	0	t-t _{UDRE} >13
66	65	6	2	53	0.094297	0.0924	0.001897	0	
72	71	6	2	53	0.092696	0.0924	0.006	C	DDC + DDC (+ +)
78	77	6	2	53	0.108310	0.0924	0.015	$(l) \leq$	$PRC_n + RRC_n(l-l_n)$
84	83	6	2	53	0.430000	0.0924	0.337(F	PRC - PRC
90	89	2	0	89	0.052074	0.0520	0.000 <i>RF</i>	$RC_n = 1$	n n n n n n n n n n n n n n n n n n n
96	95	6	0	95	0.054732	0.0520	0.000		$t_n - t_o$
102	101	6	0	101	0.061394	0.0520	0.000014	0.00938 <mark>0</mark>	
108	107	6	0	107	0.122814	0.0924	0.000014	0.03040 <mark>0</mark>	RRC Time – Out
114	113	6	0	113	0.027104	0.0924	0.000014	0.03469 <mark>0</mark>	$\Delta t = t_n - t_o > I_{fc}$
120	119	2	1	119	0.052014	0.0520	0.000014	0	$t-t > 8 \Lambda t$
126	125	6	1	125	0.052014	0.0520	0.000014	0	$\iota \iota_n > 0 \Delta \iota$
132	131	6	1	131	0.052014	0.0520	0.000014	0	PRC Time – Out
138	137	6	3	119	0.092696	0.0924	0.006296	0	$t - t_{UDRE} > I_{fc} + 1$
144	143	6	3	119	0.108310	0.0924	0.015910	0	
150	149	2	2	149	0.052014	0.0520	0.000014	0	<i>Ifc=</i> 66sec

UPC

gAGE research **g**roup of **A**stronomy and **Ge**omatics

					σ^2 ; $a_t =$	σ^2	$r^2 f_a + \mathcal{E}^2 r_{ab} + \mathcal{E}^2$	$-\mathcal{E}_{ka}^{2}+\mathcal{E}_{aa}^{2}$	
Time	Last Mes	Last Mess	Last Mes	t _{UDRE}	$\sigma^2 a$		ر روز المراجع م 2جع	د ان	$\varepsilon_{fc} \equiv \frac{a}{2} \left(t - t_{UDRE} + t_{lat} \right)^2$
t (s)	t2, t6 (s)	Туре	IODF	-		° UDRE	° rc	° rrc	$\begin{pmatrix} 2 \\ a I \end{pmatrix}$
0	-1		0	-1	0.052014	0.0520	0.000014	0	$\mathcal{E}_{rrc} \equiv \left \frac{u I_{fc}}{4} + \frac{D_{rrc}}{4} \right \left(t - t_n \right)$
6	5	6	0	5	0.052014	0.0520	0.000014	0	$\begin{pmatrix} 4 & t_n - t_o \end{pmatrix}^{n}$
12	11	6	8	11	0.052014	0.0520	0.000014	0	
18	17	6	0	17	0.092414	0.0924	0.000014	0	MT 6 is missed and
24	23	6	0	23	0.092414	0.0924	0.000014	0	tuppe remains at 41s,
30	29	(2)	1	29	0.052014	0.0520	0.000014	ð	inflating the ϵ^2 , term
36	35	6	1	35	0.052014	0.0520	0.000014	0	
42	41	6	1	41	0.052014	0.0520	0.000014	0	LIDBE Time-Out
48	47	-	-	(N	0.052329	0.0520	0.000329	0	
54	53	6	1	53	9.092414	0.0924	0.000014	0	t-t _{UDRE} >13
60	59	-	-	53	0.092729	0.0924	0.000329	0	
66	65	6	2	53	0.094297	0.0924	0.001897	0	
72	71	6	2	53	0.092696	0.0924	0.006	QU	$DDC \rightarrow DDC ((\cdot \cdot \cdot))$
78	77	6	2	53	0.108310	0.0924	0.015	C(t) =	$PRC_n + RRC_n(t-t_n)$
84	83	6	2	53	0.430000	0.0924	0.337	F	PRC - PRC
90	89	2	0	89	0.052074	0.0520	0.000 <i>RF</i>	$RC_n = 1$	
96	95	6	0	95	0.054732	0.0520	0.000	п	$(t_n) - (t_o)$
102	101	6	0	101	0.061394	0.0520	0.000014	0.009380	
108	107	6	0	107	0.122814	0.0924	0.000014	0.030400	RRC Time – Out
114	113	6	0	113	0.027104	0.0924	0.000014	0.034690	$\Delta t = t_n - t_o > I_{fc}$
120	119	2	1	119	0.052014	0.0520	0.000014	0	$t-t > 8\Lambda t$
126	125	6	1	125	0.052014	0.0520	0.000014	0	
132	131	6	1	131	0.052014	0.0520	0.000014	0	PRC Time – Out
138	137	6	3	119	0.092696	0.0924	0.006296	0	$t - t_{\text{max}} > I_{e} + 1$
144	143	6	3	119	0.108310	0.0924	0.015910	0	UDRE fc fc
150	149	2	2	149	0.052014	0.0520	0.000014	0	<i>Ifc=</i> 66sec

UPC

$\boldsymbol{\sigma}_{i,flt}^{2} = \boldsymbol{\sigma}_{UDRE}^{2} + \boldsymbol{\mathcal{E}}_{fc}^{2} + \boldsymbol{\mathcal{E}}_{ltc}^{2} + \boldsymbol{\mathcal{E}}_{er}^{2}$													
Time t (s)	Last Mes t2, t6 (s)	Last Mess Type	Last Mes IODF	t _{UDRE}	σ_{flt}^2	σ^2_{UDRE}	\mathcal{E}^{2}_{fc}	ε ² rrc	$\varepsilon_{fc} \equiv \frac{a}{2} \left(t - t_{UDRE} + t_{lat} \right)^2$				
0	-1	(2)	0	-1	0.052014	0.0520	0.000014	0	$c = \left(\frac{a I_{fc}}{a} + \frac{B_{rrc}}{a}\right)(t - t)$				
6	5	6	0	5	0.052014	0.0520	0.000014	0	$c_{rrc} = \left(\frac{4}{4} + \frac{1}{t_n - t_o} \right)^{(\iota - \iota_n)}$				
12	11	6	8	11	0.052014	0.0520	0.000014	0					
18	17	6	0	17	0.092414	0.0924	0.000014	0	IODF out of sequence.				
24	23	6	0	23	0.092414	0.0924	0.000014	0	tuppe will remain at 53s				
30	29	(2)		29	0.052014	0.0520	0.000014	0	until the receip of the				
36	35	6	1	35	0.052014	0.0520	0.000014	0	next fast correction				
42	41	6	1	41	0.052014	0.0520	9.000014	0					
48	47	-	-	-	0.052329	0.0520	0.000329	0	UDRE Time-Out				
54	53	6	1	53	8 092414	0.0924	0.000014	0	t-t ₆ >13				
60	59		÷.	53	0.092729	0.0924	0.000525	0					
66	65	6	2	53	0.094297	0.0924	0.001897	0					
72	71	6	2	53	0.092696	0.0924	0.006 DI	CW	DDC + DDC (4 + 1)				
78	77	6	2	53	0,128310	0.0924	0.015 PT	$\mathcal{L}(l) =$	$PRC_n + RRC_n(t-t_n)$				
84	83	6	2	53	0.430000	0.0924	0.337	► P	PRC - PRC				
90	89	2	0	89	0.052074	0.0520	0.000 <i>RF</i>	$RC_n = 1$					
96	95	6	0	95	0.054732	0.0520	0.000		(t_n) (t_o)				
102	101	6	0	101	0.061394	0.0520	0.000014	0.009380					
108	107	6	0	107	0.122814	0.0924	0.000014	0.030400	RRC Time – Out				
							00014	0.034690	$\Delta t = t_n - t_o > I_{fc}$				
	E: Becau niccod 4	se the IU	DF was r	10t Set thoy k	as ₀₀₀₁₄	0	$t-t > 8 \Lambda t$						
brov	ided is m	nonitoring	this and	d other	ld ⁰⁰⁰¹⁴	0							
data	and it is	save for	them to	contin	ue it use.		00014	0	PRC Time – Out				
Then	nce, it is i	usina <mark>t-t</mark> .	>13, in	stead	of t-t	-> 13 fo	r 06296	0	$t - t_{UDRE} > I_{fc} + 1$				
UDR	RE Time	-Out.	,,			KE' -0 10	15910	0	Je je				
100424 (447/24810) 0000100							00014	0	Ifc=66sec				

UPC

gAGE research **g**roup of **A**stronomy and **Ge**omatics

 $\boldsymbol{\sigma}_{i,flt}^{2} = \boldsymbol{\sigma}_{UDRE}^{2} + \boldsymbol{\mathcal{E}}_{fc}^{2} + \boldsymbol{\mathcal{E}}_{mc}^{2} + \boldsymbol{\mathcal{E}}_{ltc}^{2} + \boldsymbol{\mathcal{E}}_{er}^{2}$

					N		U		a ()2
Time t (s)	Last Mes t2, t6 (s)	Last Mess Type	Last Mes IODF	t _{UDRE}	σ_{flt}^2	σ^2_{UDRE}	ε_{fc}^2	ε ² rrc	$\varepsilon_{fc} \equiv \frac{\alpha}{2} \left(t - t_{UDRE} + t_{lat} \right)^2$
0	-1	2	0	-1	0.052014	0.0520	0.000014	0	$\varepsilon = \left(\frac{a I_{fc}}{a} + \frac{B_{rrc}}{a}\right)(t - t)$
6	5	6	0	5	0.052014	0.0520	0.000014	0	$\int t_n - t_o \int t_n dt_n dt_n dt_n dt_n dt_n dt_n dt_n $
12	11	6	0	11	0.052014	0.0520	0.000014	0	
18	17	6	0	17	0.092414	0.0924	0.000014	0	The user is aware of a FC is
24	23	6	0	23	0.092414	0.0924	0.000014	0	missing.
30	29	2		29	0.052014	0.0520	0.000014	Û	RRC is formed using IODFs
36	35	6	1	35	0.052014	0.0520	0.000014	0	out of sequence $=> \xi^2 rrc$
42	41	6	1	41	0.052014	0.0520	0.000014	U	
48	47	-	-	47	0.052329	0.0520	0.0003: <u>P</u>	RC(t) =	$= PRC_n + RRC_n(t-t_n)$
54	53	6	1	53	0.092414	0.0924	0.00001		
60	59		-	53	0.092729	0.0924	0.00032 R	RC = -	$PRC_n - PRC_o$
66	65	6	2	53	0.094297	0.0924	0.00189	n n	$t_{r} - t_{c}$
72	71	6	2	53	0.092£ 3 6	0.0924	0.006296	U	
78	77	6	2	53	0.108310	0.0924	0.015910	0	RRC Time Out
84	83	6	2	53	0.430000	0.0924	0.337600	0	RRC Time – Oui
90	89	2	0	89	0.052074	0.0520	0.000014	0.000060	$\Delta t = t_n - t_o > I_{fc}$
96	95	6	0	95	0.054732	0.0520	0.000014	0.002720	$t-t_{\mu} > 8\Delta t$
102	101	6	0	101	0.061394	0.0520	0.000014	0.009380	
108	107	6	0	107	0.122814	0.0924	0.000014	0.030400	PRC Time - Out
114	113	6	0	113	0.027104	0.0924	0.000014	0.034690	
120	119	2	1	119	0.052014	0.0520	0.000014	0	$t - t_{UDRE} > I_{fc} + 1$
126	125	6	1	125	0.052014	0.0520	0.000014	0	
132	131	6	1	131	0.052014	0.0520	0.000014	0	UDRE Time-Out
138	137	6	3	119	0.092696	0.0924	0.006296	0	t-t _{UDRE} >13
144	143	6	3	119	0.108310	0.0924	0.015910	0	
150	149	2	2	149	0.052014	0.0520	0.000014	0	<i>Ifc=</i> 66sec

UPC

					$\sigma^{2}_{i,flt} =$	$\sigma^2 UDRE + 8$	$\mathcal{E}_{fc}^2 + \mathcal{E}_{rrc}^2$	$+\mathcal{E}^{2}_{ltc}+\mathcal{E}^{2}_{er}$	$\varepsilon_{fc} \equiv \frac{a}{2} \left(t - 119 + t_{lat} \right)^2$
Time t (s)	Last Mes t2, t6 (s)	Last Mess Type	Last Mes IODF	t _{udre}	σ_{flt}^2	σ^2_{UDRE}	€ ² fc	E ² rrc	$\frac{2}{10DF} = 3; if \Delta t - L /2 \neq 0$
0	-1	2	0	-1	0.052014	0.0520	0.000014	0	$\begin{bmatrix} 0 & D & I & -S, & I & J & I & I_{fc} & 2 & J \\ \hline & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ &$
6	5	6	0	5	0.052014	0.0520	0.000014	0	$\varepsilon_{rrc} \equiv \left \frac{a \left \Delta t - I_{fc} \right ^2}{2} + \frac{B_{rrc}}{\Delta t} \right \left(t - 119 \right)$
12	11	6	0	11	0.052014	0.0520	0.000014	0	
18	17	6	0	17	0.092414	0.0924	0.000014	0	Alarm Condition (IODF=3)
24	23	6	0	23	0.092414	0.0924	0.000014	0	t _{uDRE} backs to 119 (the last
30	29	2	1	29	0.052014	0.0520	0.000014	0	received Fast Correction)
36	35	6	1	35	0.052014	0.0520	0.000014	0	
42	41	6	1	41	0.052014	0.0520	0.000014	0	UDRE Time-Out
48	47	-	-	47	0.052329	0.0520	0.000329	0	t-t ₆ >13
54	53	6	1	53	0.092414	0.0924	0.000014	0	
60	59		-	53	0.092729	0.0924	0.000	DC(A)	DDC + DDC (4 + 1)
NOT	 F.	_	_			0924	0.001	C(l) =	$PRC_n + RRC_n(l-l_n)$
	Ei m TODE i	n oithar n		ia aa t t	a 7 than	0924	0.006	E P	PRC - PRC
			lessage		o s, then	0924	0.015 RF	$RC_n = -$	
	_E =t _n and	d is not u	pdated to	o the ti	me of MT	6 0924	0 337		$(t_n)(t_o)$
90	89	2	0	(89)	0.052074	0.0520	0.000014	0.000060	
96	95	6	0	95	0.054732	0.0520	0.000014	0.002720	DDC Time Out
102	101	6	0	101	0.061394	0.0520	0.000014	0.009380	RRC Time – Out
108	107	6	0	107	0.122814	0.0924	0.000014	0.030400	$\Delta t = t_n - t_o > I_{fc}$
114	113	6	0	113	0.02710	0.0924	0.000014	0.034690	$t-t > 8\Lambda t$
120	119	2	1	119	0.052014	0.0520	0.000014	0	$\iota \iota_n > 0 \Delta \iota$
126	125	6	1	125	0.052014	0.0520	0.000014	0	PRC Time – Out
132	131	6	1	131	0.052014	0.0520	0.000014	0	$t - 119 > I_{fc} + 1$
138	137	6	3	119	0.092696	0.0924	0.006296	0	<u>J</u> c
144	143	6	3	119	0.108310	0.0924	0.015910	0	
150	149	2	2	149	0.052014	0.0520	0.000014	0	<i>Ifc=</i> 66sec

UPC

- Primarily Correct Ephemeris Errors
 - Also removes Slowly Varying Clock
 - And discontinuities in Broadcast Ephemeris
 - Separate Degradation Factors for Lost Messages
- For GEO are contained in MT9

GAGE

Long-Term Corrections (MT25)

$$\begin{bmatrix} \delta x(t) \\ \delta y(t) \\ \delta z(t) \end{bmatrix} = \begin{bmatrix} \delta x_0 \\ \delta y_0 \\ \delta z_0 \end{bmatrix} + \begin{bmatrix} \delta \dot{x}_0 \\ \delta \dot{y}_0 \\ \delta \dot{z}_0 \end{bmatrix} (t - t_0) \longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_{GPS/GLONASS} \\ y_{GPS/GLONASS} \\ z_{GPS/GLONASS} \end{bmatrix} + \begin{bmatrix} \delta x \\ \delta y \\ \delta z \end{bmatrix}$$

$$\delta t(t) = \delta a_{f0} + \delta a_{f1}(t - t_0) + \delta a_{fG0} \longrightarrow dt = dt_{GPS/GLONASS} + \delta t$$

$$GLONASS$$
(MT12)

 $Y = C1 + PRC - \rho^* + \frac{dt^{sat}}{dt} + rel - TGD + IONO + TROP$

GEO Coordinates and clock (MT 9)

$$\begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} x_G \\ y_G \\ z_G \end{bmatrix} + \begin{bmatrix} \dot{x}_G \\ \dot{y}_G \\ \dot{z}_G \end{bmatrix} (t - t_0) + \frac{1}{2} \begin{bmatrix} \ddot{x}_G \\ \ddot{y}_G \\ \ddot{z}_G \end{bmatrix} (t - t_0)^2$$

$$dt(t) = \delta a_{Gf0} + \delta a_{Gf1} (t - t_0)$$

LONG-TERM DEGRADATION PARAMETER (GPS/GLONASS/GEO)

• GPS/GLONASS • vcode=1 (MT25, 24) $\varepsilon_{ltc} = \begin{cases} 0 & \text{if } t_0 < t < t_0 + I_{ltc_v1} \\ C_{ltc_lsb} + C_{ltc_v1} \max(0, t_0 - t, t - t_0 - I_{ltc_v1}) & \text{otherwise} \end{cases}$

• vcode=0 (MT25, 24)

$$\varepsilon_{ltc} = C_{ltc_v0} \left[\frac{t - t_{ltc}}{I_{ltc_v0}} \right]$$

• GEO

$$\mathcal{E}_{ltc} = \begin{cases} 0 & t_0 < t < t_0 + I_{geo} \\ C_{geo_lsb} + C_{geo_v} \max(0, t_0 - t, t - t_0 - I_{geo}) & otherwise \end{cases}$$

$$\boldsymbol{\sigma}^{2}_{i,flt} = \boldsymbol{\sigma}^{2}_{UDRE} + \boldsymbol{\mathcal{E}}^{2}_{fc} + \boldsymbol{\mathcal{E}}^{2}_{rrc} + \boldsymbol{\mathcal{E}}^{2}_{ltc} + \boldsymbol{\mathcal{E}}^{2}_{er}$$

En Route Through NPA Degradation

• For Precision Approach a user is only allowed to miss one of any particular message. However, the user can still operate in less stringent phases of flight even if they have missed two or any particular fast or slow correction messages.

$$\boldsymbol{\sigma}^{2}_{i,flt} = \boldsymbol{\sigma}^{2}_{UDRE} + \boldsymbol{\mathcal{E}}^{2}_{fc} + \boldsymbol{\mathcal{E}}^{2}_{rrc} + \boldsymbol{\mathcal{E}}^{2}_{ltc} + \boldsymbol{\mathcal{E}}^{2}_{er}$$

- Only Requiered for Precission Approach
 - Grid of Vertical Ionospheric Corrections
 - Users Select 3 o 4 IGPs that Surrounding IPP
 - 5°x5° or 10°x10° for 55°<Lat<55°
 - Only 10°x10° for 55°<|Lat|<85°
 - Circular regions for |Lat|>85°
 - Vertical Correction and UIVE Interpoled to IPP
 - Both Converted to Slant by Obliquity Factor

•IGP: Ionospheric Grid Point •IPP: Ionospheric Pierce Point

UPC

gAGE

IGP MASK Message (MT18)

gAGE

IONOSPHERIC DELAYS and BOUNDS (MT26)

gAGE

ESTB Sep 12th 2002

IGPs Selection Rules

- Four Distinct Grid Regions
 - First look for Surrounding Square Cell
 - Else Seek Surrounding Triangular Cell
 - If Neither Available for 5°x5° look at 10°x10°
 - From 75° to 85° Interpolate Using Virtual IGPs
 - No correction possible if Not Surrounded

|Lat| <= 55

gAGE

The selection of Interpolation Grid points |Lat| <= 55

The selection of Interpolation Grid points UPC 75<|Lat| <= 85 350 60' 310" 320 340 30 50' о 10 40 80 70' 60 50' 40 30

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

research **g**roup of **A**stronomy and **Ge**omatics

gAGE

$$\tau_{vpp}(\lambda_{pp},\phi_{pp}) = \sum_{i=1}^{7} W_i(x_{pp},y_{pp})\tau_{vi}$$

$$\tau_{vi}$$

$$IC_i = -\tau_{spp}(\lambda_{pp},\phi_{pp}) = -F_{pp}\cdot\tau_{vpp}(\lambda_{pp},\phi_{pp})$$

$$F_{pp} = \left[1 - \left(\frac{R_e \cos E}{R_e + h_I}\right)^2\right]^{-\frac{1}{2}}$$

$$\tau_{vpp}(\lambda_{pp},\phi_{pp}) = \sum_{i=1}^{4} W_i(x_{pp},y_{pp})\tau_{vi}$$

$$T_{vi}$$

$$IC_i = -\tau_{spp}(\lambda_{pp},\phi_{pp}) = -F_{pp}\cdot\tau_{vpp}(\lambda_{pp},\phi_{pp})$$

$$F_{pp} = \left[1 - \left(\frac{R_e \cos E}{R_e + h_I}\right)^2\right]^{-\frac{1}{2}}$$

UPC

research **g**roup of **A**stronomy and **Ge**omatics

gAGE

Degradation of Ionospheric Corrections

$$\sigma_{UIRE}^{2} = F_{pp}^{2} \sigma_{UIVE}^{2} \qquad F_{pp} = \left[1 - \left(\frac{R_{e} \cos E}{R_{e} + h_{I}}\right)^{2}\right]^{\frac{1}{2}}$$

$$\sigma_{UIVE}^{2} = \sum_{n=1}^{N} W_{n} (x_{pp}, y_{pp}) \sigma_{n,ionogrid}^{2}, N = 4 \text{ or } 3$$

$$\sigma_{ionogrid}^{2} = \begin{cases} (\sigma_{GIVE} + \varepsilon_{iono})^{2}, if \quad RSS_{iono} = 0 \quad (MT10) \\ \sigma_{GIVE}^{2} + \varepsilon_{iono}^{2}, if \quad RSS_{iono} = 1 \quad (MT10) \end{cases}$$

$$F_{iono}^{2} = C_{iono_step} floor \left(\frac{t-t_{iono}}{I_{iono}}\right) + C_{iono_ramp} (t-t_{iono})$$

$$MT10$$

$$B_{rrc}, C_{ltc_lsb}, C_{ltc_v1}, I_{ltc_v0}, C_{er}, RSS_{UDRE}, C_{iono_ramp}, C_{iono_step}, I_{iono}, RSS_{iono} \end{cases}$$

$$MT10$$

$$B_{rrc}, C_{ltc_lsb}, C_{ltc_v1}, I_{ltc_v0}, C_{er}, RSS_{UDRE}, C_{iono_ramp}, C_{iono_step}, I_{iono}, RSS_{iono} \end{cases}$$

SBAS Performances

GNSS Performance Requirements

Flight Phase	Accuracy (H) 95%	Accuracy (V) 95%	Alert Limit (H)	Alert Limit (V)	Integrity	Time to alert	Continuity	Avail- ability	Associated RNP type(
ENR	3.7 Km (2.0 NM)	N/A	7400 m 3700 m 1850 m	N/A	1-10 ⁻⁷ /h	5 min.	1-10 ⁻⁴ /h to 1-10 ⁻⁸ /h	0.99 to 0.999999	20 to 10
ТМА	0.74 Km (0.4 NM)	N/A	1850 m	N/A	1-10 ⁻⁷ /h	15 s	1-10 ⁻⁴ /h to 1-10 ⁻⁸ /h	0.999 to 0.999999	5 to 1
NPA	220 m (720 ft)	N/A	600 m	N/A	1-10-7/h	10 s	1-10-4/h to 1-10-8/h	0.99 to 0.999999	0.5 to 0.3
APV-I	220 m (720 ft)	20 m (66 ft)	600 m	50 m	1-2x10-7 per approach	10 s	1-8x10-6 in any 15 s	0.99 to 0.999999	0.3/125
APV-II	16.0 m (52 ft)	8.0 m (26 ft)	40 m	20 m	1-2x10-7 per approach	6 s	1-8x10-6 in any 15 s	0.99 to 0.999999	0.03/50
CAT-I	16.0 m (52 ft)	6.0 - 4.0 m (20 to 13 ft)	40 m	15 -10 m	1-2x10-7 per approach	6 s	1-8x10-6 in any 15 s	0.99 to 0.999999	0.02/40

ICAO's GNSS Standards and Recomendation Practices (SARPS)

gAGE

INTEGRITY RISK REQUIREMENTS:

PROTECTION LEVELS

To protect the user against misleading information (MI) due to data corrupted by the noise induced by the measurement and algorithmic process when the system is in a nominal state.

JP(

$$VPL = K_v d_v$$

• PA: SIS Integrity requirement: 2x10⁻⁷ /approach

- → K_h =6.0, K_v =5.33 (Gaussian distrib.)
 - Only 1 indep sample per approach (150s)
 - A half of the total integrity allocated to **VPL** (\rightarrow 10⁻⁷/sample)
 - HPL bounding prob. taken as negligible

and only one dimension is used for HPL (\rightarrow 10⁻⁹/sample)

• En Route to NPA: SIS Integ. req. 1x10⁻⁷/hour

- → K_h = 6.18 (Rayleigh distrib.)
 - 10 indep samples per hour
 - A half of the total integrity allocated to HPL
 - Worst case assumption d_{min}=d_{major}

 $(\rightarrow 5 \times 10^{-9} / \text{sample})$

 $X \sim N(0,1)$ $p(|X| > K_v) = 10^{-7} \Longrightarrow K_v = 5.33$ $p(|X| > K_h) = 10^{-9} \Longrightarrow K_h = 6.0$ $Y \sim Rayleigh$ $p(|Y| > K_h) = 5 \cdot 10^{-9} \Longrightarrow K_h = 6.18$

- Each epoch, HPL/VPL are compared with the Alert Limits (HAL/VAL) defined for the operation mode:
 - Hazardously Misleading Information (HMI): NSE> HAL or VAL
 INTEGRITY RISK
 - Misleading Information (MI): NSE > HPL or VPL
 →Out-Of-Tolerence cond.
- The system is set unavailable when XPL > XAL

gAGE

ESTB Performances in Barcelona during 2002

• The ESTB is a full-scale real-time prototype of the EGNOS system, but it is reduced in size and capabilities.

• Therefore it has to be noted that the results obtained with ESTB will not be the same as the final EGNOS performances.

• EGNOS will benefit from a better infrastructure and a more developed and robust design.

availability > 99%

EXAMPLE 3 :

Large Protection Level Values (ESTB January 10th 2002)

4 satellites used in the computations

EXAMPLE 4 :

Fast Correction degradation (ESTB January 10th 2002)

4 or 5 satellites used in the computations

$$\mathcal{E}_{fc} = a \frac{\left(t - t_u + t_{lat}\right)^2}{2}$$

$$a=5.8mm/s^{2} ; t_{lat} = 7s$$
$$t-t_{u} = t-t_{fc} \le 5s (tipically)$$

 $\boldsymbol{\sigma}^{2}_{i,flt} = \boldsymbol{\sigma}^{2}_{UDRE} + \boldsymbol{\mathcal{E}}^{2}_{fc} + \boldsymbol{\mathcal{E}}^{2}_{rrc} + \boldsymbol{\mathcal{E}}^{2}_{ltc} + \boldsymbol{\mathcal{E}}^{2}_{er}$ 10th January 2002: VPL and MT10-MT7 VPL (MT10=0 ۵

UPC

EXAMPLE 5 :

Periods without Nav. Sol. (ESTB, February 14th 2002)

		Sec of Wee	Message Type	e P	RN	of	Sate	llite	s in	use	Analysis of Feb 14 th	
	_	413846	MT02		11	14	20	28	29	31		
		413847	MT03		11	14	20	28	29	31		
		413848	MT04		11	14	20	28	29	31		
		413849	MT25		11	14	20	28	29	31		
		413850	MT00		11	14	20	28	29	31		
	I	413851	MT26 BN4 BI1		11	14	20	28	29	31		
	<u>ě</u>	413852	MT26 BN4 BI1		11	14	20	28	29	31		
	2	413853	MT26 BN4 BI1		11	14	20	28	29	31		
		413854	MT26 BN4 BI1		11	14	20	28	29	31		
		413855	MT26 BN4 BI2		11	14	20	28	29	31	SIS anomaly that	
ç	2	413856	MT26 BN4 BI2		11	14	20	28	29	31	should be solved	
ď		413857	MT26 BN4 BI2		11	14	20	28	29	31	should be solved	
5		413858	MT26 BN4 BI2		11	14	20	28	29	31	with MT6 broad.	
1		413859	MT26 BN4 BI3				20	28	29	31		
		413860	MT26 BN4 BI3							31		
		413861	MT26 BN4 BI3									
		413862	MT26 BN4 BI3					• MT26 repetitions (alarm condition).				
		413863	MT26 BN4 BI4									
		413864	MT26 BN4 BI4				• FC updated after 21 seconds.					
		413865	MT26 BN4 BI4				•	The satellites are deselected after				
		413866	MT26 BN4 BI1					12s	ec.	due	e to the UDRE Time-Out.	
		413867	MT02									
		413868	MT03		11	14						
		<mark>41386</mark> 9	MT04		11	14	20	28	29			
		413870	MT00		11	14	20	28	29	31	ENAC	

UPC

gAGE research **g**roup of **A**stronomy and **Ge**omatics

EXAMPLE 6 :

Analysis of PRC (PRN10) Large Values (ESTB February 14th 2002)

gAGE research group of Astronomy and Geomatics

UPC

PRC Analysis: DOY=045

gAGE research group of Astronomy and Geomatics

UPC

PRC Analysis: DOY=045

UPC **gAGE** research group of Astronomy and Geomatics

PRC Analysis: DOY=045

EXAMPLE 7:

LOI when High PRC for PRN10 (ESTB February 14th 2002)

Analysis of Feb 14th2002: LOI when High PRC for PRN10

gAGE research group of Astronomy and Geomatics

UPC

MT02: PRC for satellite PRN10

EXAMPLE 8 :

LOIs due to wrong ionospheric corrections (ESTB September 12th 2002)

gAGE

UPC1 and UPC2 16Km baseline

log(N)

з

- 2

ML

Epoche

0

HMI

Epocha: 0

45 50

MI Epocha:

нм

25

30

Epochs: 0

log(N)

- 2

40

research group of Astronomy and Geomatics **gAGE**

UPC

research group of Astronomy and Geomatics gAGE

PART III

EGNOS and **Civil** Aviation

Civil Aviation Navigation

VFR : Visual Flight Rules Visibility better than 5 Km – 8 Km

• IFR : Instrumental Flight Rules Radionavigation Aids

Radionavigation Aids

Non Directional Beacon (NDB)

Radionavigation Aids

VHF Omnidirectional Ranger (VOR)

Distance Measuring Equipement (DME)

Instrumental Landing System (ILS)

Instrumental Landing System (ILS)

Instrumental Landing System (ILS)

Radar Vectoring

Phases of flight

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

UPC

research group of Astronomy and Geomatics

gAGE

IFR Cruise

research group of Astronomy and Geomatics

gAGE

IFR Arrivals

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

IFR Approach

UPC

research group of Astronomy and Geomatics

gAGE

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

Avionics

Avionics

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

research group of Astronomy and Geomatics

GAGE

RNAV concept

• RNAV = Area Navigation

Navigation using flight tracks joining ANY two points without the need for the overfly of specific ground facilities.

RNAV concept

• RNAV = Area Navigation

Navigation using flight tracks joining ANY two points without the need for the overfly of specific ground facilities.

- More flexibility
- Less fuel consumption
- Delay reduction (bottle necks)
- Noise reduction

research group of Astronomy and Geomatics

gAGE

RNAV concept

RNAV (Area Navigation)

- VOR/DME
- DME/DME
- -INS
- LORAN C
- GPS + RAIM

RNAV concept

RNAV (Area Navigation)

- VOR/DME
- DME/DME
- -INS
- LORAN C
- GPS + RAIM

RNAV concept

RNAV (Area Navigation)

- VOR/DME
- DME/DME
- -INS
- LORAN C
- GPS + RAIM

RNAV application (spain)

B-RNAV routes FL 245	B-RNAV routes	P-RNAV free routes?	
Optional B-RNAV routes	FL 150		
Conventional	Conventional Optional		4D RNAV?
routes	routes FRNAV routes		
TMA Exceptional	Optional P-RNAV	P-RNAV procedures?	
B-RNAV procedures Conventional procedures	procedures Conventional procedures	Verti Guida	ical Ince
		•	4D RNAV?
1998	Mar 2003	2005	

RNAV application (spain)

UPC

Vertical Guidance

Nowadays RNAV procedures are only 2D For precision approaches Vertical Guidance is also needed

	Decision Height	Visibility
CAT - I	200 ft (60m)	> 800 m
CAT - II	100 ft (30m)	> 400 m
CAT - III	100 ft - 0 ft *	> 400 m - 0 m *

* Variable in function of aircraft , crew, airport facilities,... certification

Manuel Hernández-Pajares, J. Miguel Juan, Jaume Sanz, Xavier Prats, February 2002.

EGNOS is designed to meet P-RNAV with vertical guidance (APV)

ILS

Very precise approaches: CATI, CATII, CATIII

Straight approaches

Local coverage

CAT-I performnances

EGNOS

Curved approaches

Global coverage with constant accuracy

Example: Nice approaches

See [3]: Approaching Nice with the EGNOS System Test Bed. Satellite Navigation and Positioning world show, NavSat 2001

L'	Primary Means of Navigation - Take-Off, En Route, Approach and Landing
• <u>•</u> •••	More Direct Routes-Not Restricted by Location of Ground-Based Navigation Equipment
	Precision Approach Capability-At any Qualified Airport in U.S.
	Decommissioning of Older, Expensive Ground-Based Navigation Equipment
GPS Receiver	ReducedSimplified Equipment on Board Aircraft
Le suite	Increased Capacity-More Aircraft Allowed in Given Airspace Without Increased Risk

- 1. J. Ventura-Travesset, P. Michael and L. Gautier, 2001. Architecture, Mission and signal processing aspects of the EGNOS System: the first European implementation of GNSS. <u>http://esamultimedia.esa.int/docs/egnos/estb/Publications</u>.
- Todd Walter, 1999. WAAS MOPS: Practical Examples. ION National Technical Meeting Proceedings, Sant Diego, California, USA. <u>http://waas.stanford.edu/</u>.
- 3. S. Soley, E. Breeuwer, R. Farnworth, J.P. Dupont, Y. Coutier, 2001, Approaching Nice with the EGNOS System Test Bed. Satellite Navigation and Positioning world show, NavSat 2001. <u>http://www.eurocontrol.fr/projects/sbas</u>.
- Minimum Operational Performances Standards for Global Positioning System / Wide Area Airborne Equipment. RTCA/Doc 229A, June 1998.
- 5. M. Hernández-Pajares, J.M. Juan and J. Sanz, 2002. GPS Data processing: Code and Phase. Algorithms, Techniques and Recipes. <u>http://gage1.upc.es</u> (in Spanish and English)
- 6. M. Hernández-Pajares, J.M. Juan and J. Sanz, X. Prats, J. Baeta. Basic Research Utilities for SBAS (BRUS). V Geomatics Week. Barcelona, 2003.

We acknowledge to EUROCONTROL for providing the ESTB data sets used in the ESTB performance examples.

That's all,

Thank you for your attention!