

International Civil Aviation Organization

ATN Seminar and Third ATN Transition Task Force Meeting

Singapore, 26-30 March 2001

Agenda Item 6: Planning and Implementation Considerations

ASIA/PACIFIC REGIONAL ATN TRANSITION PLAN

(Presented by Australia)

Asia/Pacific Regional ATN Transition Plan

ATN Seminar Singapore, 26th - 27th March 2001

ATNTTF Working Group B

- Established to develop the ATN
 Ground-Ground Transition Plan for the Asia/Pacific Region
- WG/B Include Representatives from:
 - Australia
 - Hong Kong China
 - Singapore
 - Thailand
 - United States

ATN Transition Plan

- Recommendation for a Three Stage ATN Transition:
 - Stage 1 Upgrade Current/Existing
 Infrastructure
 - Stage 2 Establishment of a Ground ATN Backbone Router Network
 - Stage 3 Connectivity of User ATN
 Routers to the Backbone

Stage 1 - Existing Infrastructure

- AFTN Infrastructure
 - Based on point to point circuits
 - Majority of Circuits are low speed: 50 baud through to 9600bps
 - Circuit Protocols range from no protocols through to COPB and X.25

Asia/Pacific AFTN Topology

Current Regional Circuit Speeds

50 baud to 1200bps = 65% 50 baud to 4800bps = 88%

Current Regional Protocols

Non ATN Protocols = 65%

Stage 1 - Upgrade of Circuits

- ATN at present requires Subnetworks to interface at X.25
- Currently the majority of AFTN circuits (88%) will not be suitable for ATN
- This will require new circuits to be implemented or existing circuits to be upgraded

Stage 1 - Bandwidth Issues

- Bandwidth for circuits will need to be increased substantially.
- Speeds from 9.6kbps to 64kbps or higher will need to be considered.
- Overheads from each layer of the OSI stack will increase total message size as much as 94% (standard AFTN message size using AMHS)

ATN Applications

Stage 2 - ATN Backbone

- Selection of Locations based on Existing Inter-Regional Connections and Main Internal Connections
- Diversity for Backbone Connectivity within the Asia/Pacific Region and Neighbouring Regions
- Min of 56kbps to 64kbps for Backbone Trunk Speeds

ATN Regional Backbone

Stage 3 - ATN Connectivity

- Generally ATN Routers will connect to the ATN Backbone
- In some cases ATN Routers will connect to other ATN Routers to get to the ATN Backbone

Asia/Pacific ATN Routing

AFTN to AMHS Transition

- For the very first time there is now an alternative to the replacement of an AFTN system AMHS
- Transition to AMHS can involve a number of steps
 - Introduction of AFTN/AMHS Gateways.
 - To full AMHS Interconnection between States.

Current AFTN Environment

Full Implementation of AMHS

Implementation of AFTN/AMHS Gateways

Migration to AMHS - 1

Migration to AMHS - 2

Full AMHS Implementation

AIDC Implementation

- ATN AIDC is not Compatible with AIDC over AFTN.
- Implementation of ATN AIDC will need to be implemented by arrangement between both parties.
- Possible phased implementation can be AIDC over AFTN to AIDC over AMHS.

AIDC Over AMHS

Conclusions

- Implement new links or Upgrade existing AFTN links where appropriate to be compatible with ATN protocols.
- Plan for adequate bandwidth which can be increased without restriction.
- Interim arrangements can be set up between States which have already started their implementation programs.