

International Civil Aviation Organization

ATN Seminar and Third ATN Transition Task Force Meeting Singapore, 26-30 March 2001

Agenda Item 6: Planning and Implementation Considerations

ATN ACTIVITIES IN AUSTRALIA

(Presented by Mr. Craig Head, Australia)

Australian ATN Activities WASERV/Oro

Presented by

Craig Head

ATN In Australia

Airservices Australia has funded two ATN Programs since 1996.

Program 1 - ASIATN Project (1996 - 1998)

- Collaborative Research and Development Agreement was signed with TRAC (Airsys ATM Pty Ltd) in October 1996
- Project was formally Completed in August 1998

Program 2 - Investigation of Networked CNS/ATM Applications (INCA) (1998 - 2000)

- Started in July 1998
- Completed end of July 2000

Program 1 - ASIATN Project

Development of an ATN Validation Platform

End System Initial Platform

Compatible with ADS-Europe Trials.

End System Main Platform (Compliant to CNS/ATM-1)

- Ground End Systems
- Airborne End System
- ATN Routers
- Aeronautical Mobile Satellite Service (AMSS) Data 3 service

Adapting existing products to the ATN

- EASY (Eurocat 200)
- Air Ground Data Generator (AGDG)

Develop modules to integrate various components to the ATN

- XTI (X/Open Transport Interface)
- Satellite Data Unit (SDU) A429 Bridge

Evaluate Initial Performance Criteria

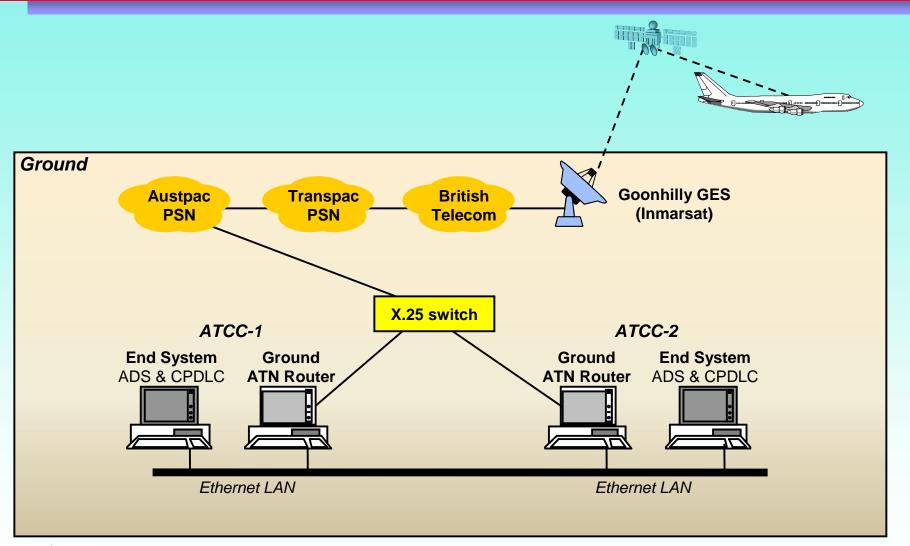
ASIATN Achievements

Development of a CNS/ATM-1 ATN Validation Platform

- Provides both ground ATN equipment and pseudo aircraft ATN equipment
- Implementation of the ADS and CPDLC applications and CM application
- Tested using a SATCOM subnetwork and domestic and international packet networks

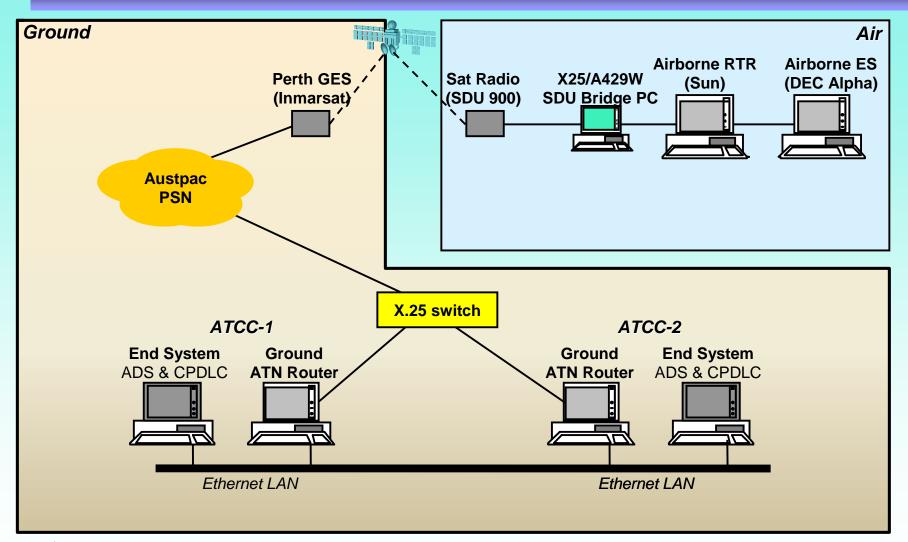
Demonstrated ease of integration of CNS/ATM-1 into existing ATC system products

- Thomson EASY (Eurocat 200)
- Thomson AGDG
- TES (Trial End System)
- EurATN



ASIATN Achievements

- Successful test trials with live aircraft with ADS-Europe Program
- Developed experience in the ATN and related technologies
- Co-operation with other organisations around the world in the research and development of ATN



Initial Platform - ADS-Europe Trials

ATN Main Platform with AMSS

Program 2 - INCA Project

- Continues the work performed by the ASIATN Project
 - Satellite Data Link Exploitation
- **Expand ATN Validation Platform to include:**
 - A VDL Mode 2 Subnetwork
 - An AMHS and AMHS/AFTN Gateway Functionality
- Conduct Exploitation Programs into these services
 - Participation in ATN trials with JCAB and Aerospatiale-Matra-Airbus
- Perform VDL Flight Trials
- Conduct an ATN Cost Benefit Analysis Study

Summary of AMSS Results

80% Improvement in end-to-end transit delay performances over FANS-1

- Transit Delay Performances over Satcom were better than anticipated. When using high speed channels, transit delays of less than 10 seconds on average were being recorded.
- Overall reliability of communications improved by the use of the ATN transport layer
 - Integrity Checking
 - Automatic Reordering and Retransmissions
 - End-to-End Acknowledgments

Cost for ATN routing services and application data delivery was evaluated

- Common Costs routing information exchanges and logon.
 - **ADS Costs Periodic and Event Reporting.**
 - **CPDLC Costs Dialogues and Transport Connection.**

VDL Activities

VDL Mode 2 Radio Equipment and Interface - July 1998 to July 1999

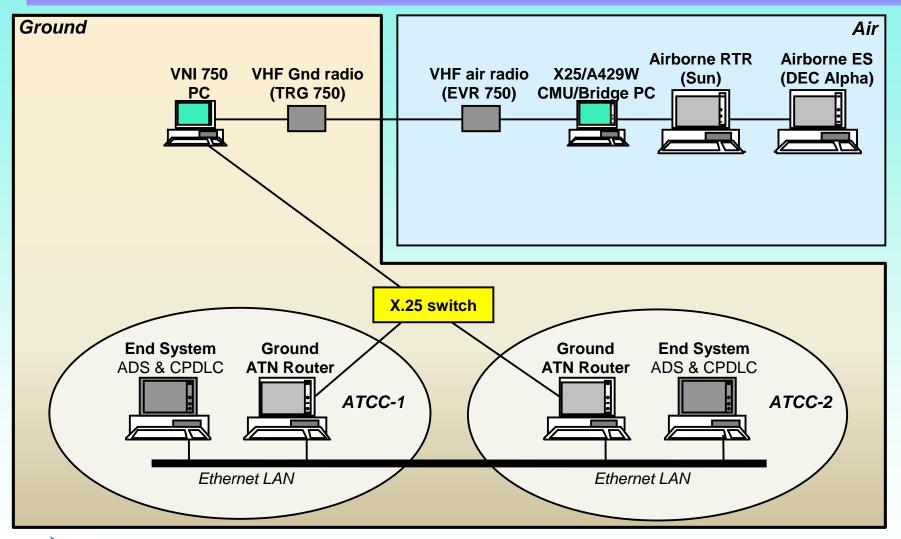
- Adaptation of Airborne Radio (EVR 750) and Ground Radio (TRG 750) to comply with VDL Mode 2 Standards
 - Radio built by Thomson CNI (Thomson-CSF Comsys)
- Development of a VHF Network Interface (VNI)
 - VNI built by Thomson CNI (Thomson-CSF Comsys)
- Installation and SAT July 1999

Development of a CMU/Bridge to Interface Airborne Radio to ATN Router - January 1999 to October 1999

✓ Developed by INCA Project

VDL Activities

- Modification of EurATN to access both AMSS and VDL-2 - March 1999 to June 1999
 - Work Required for Airborne Component of Platform
 - Modifications made by INCA Project
- Modification of ProATN to access both AMSS and VDL-2
 - Work Required for Ground Component of Platform
 - Modifications made by Sofréavia
- Qualification Testing October 1999 to January 2000
- Exploitation Testing January 2000 to July 2000
- VDL Flight Trials January 2000 to May 2000


VDL Activities

Trials - November 1999 to June 2000

- Phase 1 Testing of ATN Router connectivity Nov 1999
- Phase 2 Testing of Upper Layers and CM and ADS Application - Dec 1999
- Phase 3 Testing of CPDLC Application Feb 2000
- Phase 4 Testing of ADS and CPDLC Applications Jun 2000
- Aerospatiale Matra Airbus Trials June 2000
 - Interoperability trials of ADS and CPDLC using experimental ATN systems available in Europe including the Aerospatiale-Matra-Airbus "Iron Bird" Simulator

ATN Platform with VDL Mode 2

Summary of VDL Mode 2 Results

Round Trip Transit Delays in the range of 1 - 1.6 seconds

 However there was a cluster of samples at around 20 - 25 seconds which is consistent with the re-transmission intervals of the Transport Protocol.

Subnetwork Switching

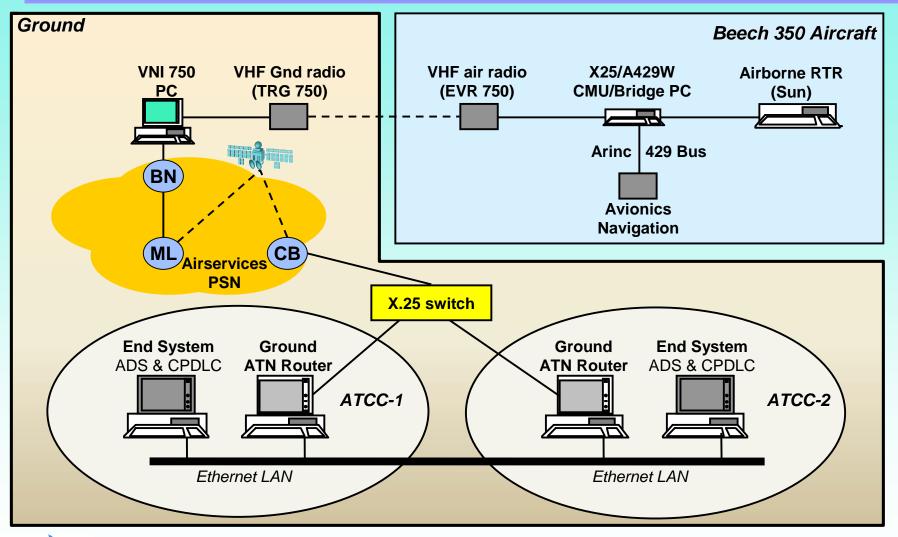
- Evaluate transit delays imposed on messages immediately following a subnetwork switch over between AMSS and VDL2
 - While both subnetworks are connected
 - Establishment of alternate subnetwork

VDL Flight Trials - (1)

Airservices Beech 350 Special Mission Aircraft used for flight trials.

- Required rehosting of CMU/Bridge and Airborne Router computer platforms and EVR 750 radio set.
- Trials conducted over two days (May 24 & 25) around Brisbane area with connection via PSN back to Canberra ATN Validation Platform

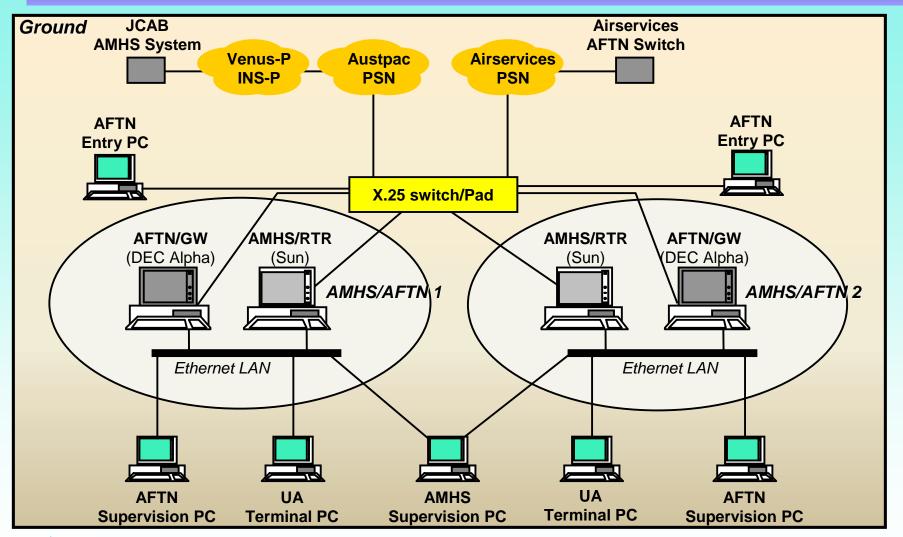
Round trip times were measured on average to be around 2 - 3 seconds.


16% of the results also showed 30 - 40 second delays

- Results are still being analysed to ascertain what is causing the delays - Transport Layer Re-transmission timer is being triggered.
- Re-transmission is expected to be caused by collisions on the A429 Williamsburg channel between the CMU/Bridge and Airborne Radio.

PSN introducing a 1 second delay when compared to Lab results - Satellite Link and Digital Data Service

ATN Platform with VDL Flight A/craft


AMHS Activities

AMHS Development Work - July 1998 to May 1999

- Work carried out by Syseca
 - Integrating a ProATN stack to the ISOCOR X.400 server product (ISOPLEX)
 - AMHS/AFTN Gateway functionality incorporated into Aermac AFTN software
- FAT May 1999
 - Internal FAT conducted by Airsys ATM and Syseca
- Installation and SAT June 1999
 - Carried out on the Platform
- Qualification Testing July 1999 to January 2000
- Exploitation Testing January 2000 to July 2000
- JCAB Trials May 2000

ATN Platform with AMHS/AFTN

Summary of AMHS Results

AMHS Trials with Japanese Civil Aviation Bureau

 First trial of sending AMHS messages between two States in the Asia Pacific Region.

Difference in ATN SARPs interpretation

Addressing of SS acknowledgment messages

Review Performance Issues

- Message integrity check for loss or corrupted messages
- The envelope of a AMHS message is increased 10 fold when compared to the AFTN.
 - However communication speeds has also increased over the years from 50 baud to 9.6kbps to 64kbps which should compensate for the additional information overhead.
 - Improved message delivery and automatic recovery due to the underlying OSI protocol layers.

 ATN only applies to International Connections - Domestic circuits can use TCP/IP and P1, P3 and P7 protocols between end users & Message Servers

Summary of AMHS Results

- Impact of AMHS on current AFTN Procedures and Practices
 - AMHS could place responsibility back on to end users for confirming message delivery.
 - AMHS requires less supervision for message management
 - HMI and Operator interaction issues to be addressed
- Review of Addressing Schemes as proposed in the SARPs
 - Currently being addressed by the various ICAO Regions including Europe and Asia Pacific.
 - Platform has helped in trialing different types of address formats to handle gateway addressing and AMHS addressing

Cost Benefit Analysis

- Methodology Plan
- Generation of a Cost-Benefit Analysis Strategy Document

@ Generation of Data Reports

- Aviation Service Provider Infrastructure
- Ground Based Sub Networks
- Air Ground Sub Networks
- Internetwork Routers
- Ends Systems
- Systems Management
- Manufacturers
- Preliminary Report
 - Completed on 6 September 1999.

Cost Benefit Analysis

Development of Operational Concepts

Services and Applications

Development of Traffic and Routing Models

Development of a CBA Model

Running of Sensitivity Analysis

Final Report

Completed end of July 2000.

