Agenda Item 4: ATN Air-Ground Application

CONTROLLER PILOT DATA LINK COMMUNICATION (CPDLC)
CONTEXT MANAGEMENT (CM) OVERVIEW

(Presented by Vic Patel, USA)
Federal Aviation Administration (FAA)
~ ATN Seminar - CPDLC ~
Singapore
March 2001

Vic Patel, FAA/ACT-350
ATN Technical Lead
AGENDA

▶ ATN Communication overview
▶ Controller Pilot Data Link Communication (CPDLC) overview
▶ Context Management (CM) overview
▶ FAA/ U.S. CPDLC implementation phases
▶ Current status
▶ Future Activities
ATN ROUTER PACKAGES

Airborne System

Airborne End System

Airborne Router
(Boundary Intermediate System)

Ground Systems

Ground End System

End System

Ground Router
(Boundary Intermediate System)

Intermediate System
ATN ROUTER CLASSES

Airborne End System

Upper Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

Mobile Network

Airborne Boundary Intermediate System

SARPs Class-6 Router

Network Layer
Data Link Layer
Physical Layer

Ground/Ground Boundary Intermediate System

SARPs Class-4 Router

Network Layer
Data Link Layer
Physical Layer

End System

Air/Ground Boundary Intermediate System

SARPs Class-5 Router

Network Layer
Data Link Layer
Physical Layer

End System

SARPs Class-6 Router

Network Layer
Data Link Layer
Physical Layer

Ground Network
Application Layer

<table>
<thead>
<tr>
<th>System A</th>
<th>System B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Application</td>
</tr>
<tr>
<td>Presentation</td>
<td>Presentation</td>
</tr>
<tr>
<td>Session</td>
<td>Session</td>
</tr>
<tr>
<td>Transport</td>
<td>Transport</td>
</tr>
<tr>
<td>Network</td>
<td>Network</td>
</tr>
<tr>
<td>Link</td>
<td>Link</td>
</tr>
<tr>
<td>Physical</td>
<td>Physical</td>
</tr>
</tbody>
</table>
ATN FastByte Protocol Stack

Application – in ASN1 PER

Presentation
Session
Transport
Network
Link
Physical

Application – in ASN1 PER

Presentation
Session
Transport
Network
Link
Physical

FastByte
FastByte

FEDERAL AVIATION ADMINISTRATION
ATN building components
The Internetworking

- Different Services
 - Reliable Connection oriented (e.g. X.25)
 - Unreliable Connection Mode (e.g. Frame Relay)
 - LAN Connectionless (e.g. Ethernet)

- Different Addressing Plans
 - X.25 DTE Addresses (X.121 - decimal digits)
 - IEEE LAN Addresses (A.B.C.D - 48 bits)
End-to-End Internetworking

- Requires an Internetwork Protocol
 - Universally known Packet Format
 - Created by End System
 - Forwarded by Router
 - Received by Destination End System

- Requires an Addressing Plan
 - Gives a Unique Address to every End System
 - Used by Routers when forwarding
ATN Internet Protocols

- ISO-8073 Class 4 Transport Protocol (TP4)
- ISO-8602 Connectionless Transport Protocol
- ISO-8473 Connectionless Network Protocol (CLNP)
- ISO-10747 Inter-Domain Routing Protocol (IDRP)
- ISO-10589 Intra-Domain Routing Protocol (IS-IS)
End System Protocol Architecture

ATN End System Support

- Application ASEs
 - CPDLC, CM, ADS, FIS
- Fast BYTE Session & Presentation Layers
- CO and CL Transport Layer
- CL Network Layer
- ES-IS Routing

End System

<table>
<thead>
<tr>
<th>Application ASEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Byte</td>
</tr>
<tr>
<td>Presentation</td>
</tr>
<tr>
<td>Session</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COTP / CLTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLNP</td>
</tr>
<tr>
<td>Data Link</td>
</tr>
<tr>
<td>Physical</td>
</tr>
</tbody>
</table>

Subnetwork
Intermediate System Protocol Architecture

Intermediate System (ATN Router)

<table>
<thead>
<tr>
<th>IDRP</th>
<th>ES-IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLNP</td>
<td>CLNP</td>
</tr>
<tr>
<td>SNDCAF</td>
<td>SNDCAF-Mobile</td>
</tr>
<tr>
<td>SNACP</td>
<td>SNACP</td>
</tr>
<tr>
<td>Data Link</td>
<td>Data Link</td>
</tr>
<tr>
<td>Physical</td>
<td>Physical</td>
</tr>
</tbody>
</table>

IS can be
- Air/Ground
- Ground/Ground
- Airborne

ISs Support
- CL Network Layer
- Mobile SNDCAF
- IDRP
- ES-IS Routing

Subnetworks:
- Mobile Subnetwork
- Subnetwork
ATN End Systems

- Protocols Required
 - TP4 (with mandatory checksum support)
 - CLNP
- Protocols Recommended
 - ES-IS
ATN Routers

- CLNP Required by all ATN Routers
- IDRП Required by all Inter-Domain Routers
 - Air-Ground Data Links
 - Between Organizations
- ES-IS Required by Air-Ground Routers
- IS-IS and ES-IS Recommended within an organization
TP4 Functions

- Connection Mode Protocol
- Ensures end-to-end Reliable Delivery
- Provides a Checksum on each Packet
- Retransmits on Packet Loss or Corruption
- Provides End-to-End Flow Control
Connectionless Network Protocol (CLNP)

<table>
<thead>
<tr>
<th>81h</th>
<th>Len</th>
<th>Dest</th>
<th>Source</th>
<th>Options & User Data</th>
</tr>
</thead>
</table>

- Created by Sender
- Sender sends it and forgets it
- Interpreted by Routers
- Delivered to Destination System
CLNP Functions

- Simple Datagram Format
- Message Header Identifies
 - Source and Destination
 - Priority
 - Traffic Type
 - AOC Routing Requirements
 - ATSC Class
CPDLC Service Provision – Use of the ATN

Control Function

CPDLC ASE

D-Start D-End D-Data D-Abort

ACSE

Dialogue Service
CPDLC Functions

- Controller-Pilot Message Exchange Function
- Transfer of Data Authority Function
- Down Stream Clearance Function
- Ground Forward Function
CPDLC Services

- CPDLC-start service
- DSC-start service
- CPDLC-message service
- CPDLC-end service
- DSC-end service
- CPDLC-forward service
Sample CPDLC Messages

- Roger (No Parameters)
- WILCO (No Parameters)
- Affirm (No Parameters)
- AT [time] EXPECT CLIMB TO [level]
- CLEARED [route clearance]
- SQUAWK MODE CHARLIE
- REPORT REMAINING FUEL AND PERSONS ON BOARD
Context Management Users

- CM Users are:
 - Aircraft ATN Communications System
 - ATC ATN Communications Systems

- In preparation for:
 - The ADS Application
 - The CPDLC Application
 - The FIS Application
Context Management Services –
Getting To Know You

- CM-logon service
- CM-update service
- CM-contact service
- CM-end service
- CM-forward service
- CM-user-abort service
- CM-provider-abort service
CM Logon Protocol

CM-Ground-User -- CM-START Ind -- CM-START Rsp -- CM-START Cnf

CM-Service Provider

CM-Air-User -- CM-logon Ind -- CM-logon Rsp -- CM-logon Cnf
FAA CPDLC Program Requirements

- Reduce voice congestion on individual frequencies
- Provide for more dynamic and efficient Air/Ground information exchange mechanism, thereby increasing productivity
- Reduce operational error resulting from misunderstood instructions and read-back errors
- Enable alternate method of communication in event of stuck microphone or other voice problem
FAA CPDLC I / ATN Architecture

Three Major Infrastructures:

- **Ground - Ground Infrastructure**
 - FAA G-BIS to ARINC G-BIS
 - FAA - ARINC Activities
 - FAA Domain integration

- **VDL2 Subnetwork Infrastructure**
 - ARINC Ground ATN/VDL2 Service provider
 - Rockwell-Collins avionics provider for American Airlines

- **End-to-End Infrastructure**
 - All of the above plus CPDLC, CMA, Host, and DSR
 - American Airlines with ES (CPDLC, CMA) and display
Ground - Ground

Key Components:

- FAA’s Two G-BIS (ATN Back Bone Routers) - CPDLC/ATN traffic
- FAA’s One ATN Router for Maintenance - Remote access from TC, using Packet Assembler Dissembler (PAD)
- FAA’s Two HID/NAS LAN CISCO Routers – Data Link Application Processor (DLAP) & ATN Router communication
- ARINC’s Network - Allows access to ATN Ground routers
- ARINC’s GBIS - Exchange ATN routes between FAA and ARINC domains
- FAA’s NADIN II - PSN for backbone and connections between FAA and ARINC domains
FAA CPDLC Program

- **Build 1 (Domestic CPDLC)** - ground initiated only
 - ATN complaint version of Transfer of Communication (TOC), Initial Contact (IC), Altimeter Settings (AS) and free text messages
 - Use VDL Mode 2 as Air/Ground Subnetwork
 - Key site IOC in Miami, FL: June 2002

- **Build 1A (Enhanced CPDLC)**
 - ATN compliant speed, heading, altitude assignment, and route clearance messages, Standby/Deferred/Unable Message
 - Use VDL Mode 2 as Air/Ground Subnetwork
 - Key site IOC: June 2003
 - National deployment (all 20 domestic ARTCCs) complete by Dec-2004
FAA CPDLC Program

- **Build 2 (Domestic/International CPDLC)**
 - ATN complaint services (~ 114 operational messages)
 - Includes Oceanic message support
 - Will define the beginning of transition from FANS 1/A to ATN
 - Use VDL Mode 2 as Air/Ground Subnetwork
 - Integrate in Free Flight Phase II
 - Include ATN Security (SARPS Sub-Vol. VIII)
 - Key site IOC: 2006
 - National deployment complete by Dec-2006

- **Build 3**
 - Expanded ATN message set
 - Integration with Decision Support Systems
 - Use NEXCOM as Air/Ground Subnetwork
 - National deployment
Objectives

a. Ensure that US National Air Space (NAS) functionality, as existed prior to the installation of the CPDLC I capability, is not degraded.

b. Verify that CPDLC I can be integrated with the ATN in a VDL-2 environment.

c. Evaluate the CPDLC I system functionality/usability/maintainability from an Air Traffic (AT) and Airway Facilities (AF) perspective.

d. Evaluate the CPDLC I system functionality/usability from controller and flight crew perspective.

e. Evaluate CPDLC I system from complete end-to-end perspective.
Objectives

• OT will verify that Critical Operational Issues (COIs) have been resolved, and specifically will ensure that the modified HCS and DLAP are suitable for and can effectively be used in their intended environment and that the modified HCS and DLAP meet their required levels of performance.

• Suitability, effectiveness and performance with respect to COIs will be determined against specific Measures of Suitability (MOSs), Measures of Effectiveness (MOEs), and Measures of Performance (MOPs) described in OT plan.
Phase I

- Evaluated the CPDLC functionality in a simulated operational environment with field users (Miami air traffic controllers). The users had an opportunity to see, play and feel CPDLC using the DSR glass.

- Controllers received and evaluated the training that has been prepared for training the entire center. All of their recommendations, concerns and PTRs encountered during OT have been addressed.
Phase II

- Goal is to evaluate the CPDLC functionality in a REAL end-to-end environment. Other category that will be evaluated are: Security, Service Certification, Menu Build, Supervisory functions, Training materials for AF and Suitability aspects of the system.

- For this go around we don’t have plans to bring controllers from Miami. We will have Supervisors and AF personnel from Miami participating in OT.
FAA ATN Ground Service Locations during CPDLC I

= FAA BIS G/G Router remote access Location

= FAA CPDLC I/ATN and BIS G/G Router Locations
FAA CPDLC I End-to-End Connectivity

Display ➔ **CMU** ➔ **VHF Transceiver**

FAA Domain - Ground Element
- **DSRs**
- **Host**
- **HID**
- **NASLAN**
- **NAS** Router
- **NLAP**
- **CMA**

GD
- **HID**
- **NAS**

Key:
- DSR - Display System Replacement
- HID - Host Interface Device
- NAS - National Airspace System
- LAN - Local Area Network
- NSM - Network System Manager
- RMMS - Remote Maintenance Monitoring System

ARINC Domain - VDL-2 Element
- **VDL-2 Ground Stations**
- **Service Provider**
- **ARINC Domain VDL-2 Element**

Network Packet

KEY:
- DSR - Display System Replacement
- HID - Host Interface Device
- NAS - National Airspace System
- LAN - Local Area Network
- NSM - Network System Manager
- RMMS - Remote Maintenance Monitoring System

NEW AND MODIFIED SOFTWARE

NEW HARDWARE & SOFTWARE

- Interface Requirement
1) Log-On to “FAA” CM Logon Request and Response

2) Auto CPDLC Connection

3) Aircrew enters Miami Center and Contacts via R/T

4) Auto Altimeter uplink

5) Transfer via datalink to next Miami Sector

6) Transfer via datalink to next Miami Sector

7) Transfer via datalink to next Center

8) CPDLC Connection Termination

~ 7000 FT
RDR Contact & FP Correlation

~ 16,000 FT - FL190

~ FL350

Gate/Pushback or Taxi

1) Log-On to “FAA” CM Logon Request and Response
1) Log-On to “FAA” CM Logon Request and Response

3) Aircrew enters Miami Center and Contacts via R/T

5) Transfer via datalink to next Miami Sector

2) Auto CPDLC Connection

4) Transfer via datalink to next Miami Sector

6) Transfer via datalink to next Center

7) CPDLC Connection Termination

VDL-2 Coverage

KZMA
1) Log-On to "FAA" CM Logon Request and Response

2) Auto CPDLC Connection

3) Aircrew Enters Miami Center and Contacts via R/T

~ FL350

4) Transfer via datalink to next Miami Sector

5) Transfer via datalink to next Miami Sector

~ FL240

6) Auto Altimeter uplink

~ 18,000 FT

7) Transfer via datalink to Miami Approach

~ 10,000 FT

8) CPDLC Connection Termination

KZMA

VDL-2 Coverage

1) Log-On to "FAA" CM Logon Request and Response
G/G BIS (ATN ROUTER)
<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007-10</th>
<th>2011+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avionics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPDLC I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPDLC III</td>
</tr>
<tr>
<td>CPDLC IA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPDLC II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air/Ground Subnetworks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NEXCOM</td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keysite Deployment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Terminal & Oceanic</td>
</tr>
<tr>
<td>Keysite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPDLC I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPDLC II</td>
</tr>
<tr>
<td>CPDLC IA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keysite Deployment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keysite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPDLC II</td>
</tr>
<tr>
<td>CPDLC IA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPDLC II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QUESTIONS
Each layer provides a standard communications service to the layer above and below, and embodies one or more standard protocols to support that service. Within each 'layer', the lower layer service is enhanced by means of local functionality and the layer protocol to provide a richer service to the next higher layer.

The **Physical Layer** service and protocol is determined by the technology of the telecommunications link being used. The physical layer defines actual physical connections. E.g. EIA-530, RS-232, Ethernet, FDDI
The **Link Layer** standardizes the way in which data is transferred across a particular type of physical connection to overcome errors introduced into the data stream by the Physical Layer. There are different link layer standards for different physical media. E.g SDLC, HDLC MAC etc.
The **Network Layer** is basically concerned with controlling network connections depending on the type of communications network used. It is concerned with establishing, for example, X.25 switched virtual circuits between systems and providing an error corrected, flow controlled data transfer service to the Transport Layer. The Network Layer is very complex since it must also include functionality to deal with end to end data connections which may need to extend across one or more different types of network, including connection oriented and connectionless.
Transport & Lower Layers

Connection Oriented
- T-Connect
- T-Release
- T-Data

Connectionless
- T-Unitdata

Network Layer
- N-Connect
- N-Release
- N-Data
- N-Unitdata

Subnetworks

Class 0
Class 1
Class 2
Transport Layer
Class 3
Class 4
Session Layer

- S-Give Token
- S-Connect
- S-Release
- Minor Sync
- Major Sync
- S-Please Token
- Activity
- S-Data x4

Transport Layer

- Class 0
- Class 1
- Class 2
- Class 3
- Class 4

Networks