

| ROYAL AIR MAROC |



# Aviation Accident Prevention as part of Royal Air Maroc Safety Management System



## **Outline**



- I. Airline Overview
- II. Royal Air Maroc Integrated Safety Management System Organizational Chart
- III. SMS 1<sup>st</sup> Pilar : Policy & Safety Objectives
- IV. SMS 2<sup>nd</sup> Pilar : Safety Risk Management (SRM)
  - Relevant Committees
  - SRM Process
- V. SMS 3<sup>rd</sup> Pilar : Safety Insurance
  - Safety Performance Management & Measurement
  - SPI's Monitoring Predictive Analysis
  - Level of Safety Performance (LoSP)
- VI. SMS 4<sup>th</sup> Pilar : Safety Promotion
  - Training & Education | E-Learning SMS
- VII. Accident Prevention Program
  - Responsibilities & Aim of the Program
  - Safety Data Coverage (Reporting, FOQA, LOSA, Other)
  - Internal Safety Investigation Sample







## I. |Airline Overview |

#### **International Network**





## II. |Royal Air Maroc Integrated Safety Management System



**Organizational Chart** 



## III. | SMS 1<sup>st</sup> Pilar : Policy & Safety Objectives |





## IV. | SMS 2<sup>nd</sup> Pilar : Safety Risk Management |



#### **Relevant Committees**

|                                 | SAFETY REVIEW BOARD<br>Meets twice a year with Accountable Executive |                                                                      |                                                          |  |
|---------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|--|
| Multidisciplinary<br>Committees | OPERATIONS Committee<br>Meets weekly with Accountable Executive      |                                                                      |                                                          |  |
|                                 | Safety Action Group<br>(Ad hoc)<br>Meets as requested                | Quality, Safety & Security Committee<br>(CQSS)<br>Meets twice a year |                                                          |  |
|                                 | Quality & Safety Technical<br>Committee<br>(CTQS)<br>Meets weekly    | Security<br>Committee<br>(CTS)<br>Meets weekly                       | EOHS Technical<br>Committee<br>(CTST)<br>Meets Quarterly |  |
| Local Committees                | FOQA Committee<br>Meets Quarterly                                    | Mini-CTQS Committees<br>Meet twice a month                           |                                                          |  |

#### **Corrective Action** Plan (CAP) Main Causes & Factors • Safety Reporting System Identification • Control & • Existing Defences • Activity Analysis Surveillance Analysis Change Risks • Risk mitigation by relevant • Root Cause Analysis (RCA) Measures to check Risk Evaluation • Other Internal & Committee • Technical, Human, effectiveness of the (Probability, Severity) External data Risk Reevaluation & Procedural, Environmental CAP • Risk Tolerability Tolerability Hazard & Organizational Factors • Responsibilities assignment Identification **Risk Assessment by** Corrective Action • Implementation Schedule relevant committee **Review (CAR)**

### IV. | SMS 2<sup>nd</sup> Pilar : Safety Risk Management| SRM Process



Safety Performance Management & Measurement



| Safety Performance Management Process          | Requirements                                                                                                                   |                    |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Safety Objectives                              | Outcome-oriented                                                                                                               | Process-oriented   |
| Safaty Darfarmanca Indicators (SDI)            | Lagging Indicators                                                                                                             | Leading Indicators |
| Safety Performance Indicators (SPI)            | High/Low impact                                                                                                                |                    |
| Safety Performance Targets (SPT)               | S.M.A.R.T                                                                                                                      |                    |
| Safety Triggers                                | Mitigation actions may need to be taken<br>beyond Mean +1 SD, +2 SD or + 3 SD                                                  |                    |
| Acceptable Level of Safety Performance (ALoSP) | ALoSP to be achieved is established by the<br>Safety Review Board (SRB), then measured &<br>demonstrated by company's entities |                    |

## V. | SMS 3<sup>rd</sup> Pilar : Safety Insurance

**SPI's Monitoring – Predictive Analysis** 





An SPI must be **STABLE &** CAPABLE

SPI X



## V. | SMS 3<sup>rd</sup> Pilar : Safety Insurance|

Safety Performance Management & Measurement



| SPI Criticity<br>Achievement 2022 | SPI Criticity<br>Prediction 2023 |
|-----------------------------------|----------------------------------|
| SPI 1                             | SPI 1                            |
| SPI 2                             | SPI 2                            |
| SPI 3                             | SPI 3                            |
| SPI 4                             | SPI 4                            |
| SPI 5                             | SPI 5                            |
| SPI 6                             | SPI 6                            |
| SPI 7                             | SPI 7                            |
| SPI 8                             | SPI 8                            |
| SPI 9                             | SPI 9                            |
| SPI 10                            | SPI 10                           |

| SPI Criticity<br>2012 / 2023 |        |                                                      |  |  |
|------------------------------|--------|------------------------------------------------------|--|--|
| Very Critical SPI            | SPI 5  | Stabilize below the alert levels and driv            |  |  |
|                              | SPI 10 | the target in 2023                                   |  |  |
| Critical SPI                 | SPI 2  | Monitor alert levels and drive the target<br>in 2023 |  |  |
| Tolerable SPI                | SPI 7  | Drive the target in 2022                             |  |  |
|                              | SPI 9  | Drive the target in 2023                             |  |  |
| Acceptable SPI               | SPI 1  |                                                      |  |  |
|                              | SPI 3  |                                                      |  |  |
|                              | SPI 4  | Monitor in 2023                                      |  |  |
|                              | SPI 6  |                                                      |  |  |
|                              | SPI 8  |                                                      |  |  |







Royal Air Maroc Level of Safety Performance (LoSP) is monitored, measured and expressed in figures to give company's senior managers a quick and easy way to indicate the organization's safety performance, and an idea of the health status of the Safety Management System.



### VI. | SMS 4<sup>th</sup> Pilar : Safety Promotion| Training & Education | E-learning SMS - Safety Communication







## VII. Accident Prevention Program

#### **Responsibilities & Aim of the Program**



VP Quality Security & Safety is responsible for Royal Air Maroc's Accident Prevention Program, its performance and its integration into the Safety Management System.

member of

- The aim of this program is to reduce the risk of accidents by identifying flight safety hazards, potential consequences, and developing and implementing countermeasures to reduce the risk.
- Safety investigations on accidents, serious incidents or operational incidents are essential component of Royal Air Maroc's Accident Prevention Program.



14

## VII. | Accident Prevention Program |

#### Safety Data Coverage





### VII. | Accident Prevention Program | Safety Reporting



#### Reported Birdstrikes Ratio Distribution (per 1 000 trips) Q1 2019 - Q4 2022







### VII. | Accident Prevention Program | Flight Data Analysis Program

member of oneworld



### VII. | Accident Prevention Program | Flight Data Analysis Program



#### Monitored data:

- TAT PROBE Anomaly | LOC-I Precursor Excessive power during taxi-out / in | Ground Damage/Jet Blast Precursor
- Exceedance Limitation
- Long Landing | Runway Excursion
- Hard landing | ARC Precursor
- Go Around due Unstabilized Approach | Positive Safety Culture Precursor
- Unstabilzed Approach UA | Runway Excursion Precursor
- Excessive Tailwind | Runway Excursion Precursor
- High pitch angle at Take-off | LOC-I Precursor
- High pitch rate at Take-off | LOC-I Precursor
- Slow Rotation | Runway Excursion Precursor
- EGPWS SINK RATE | CFIT Precursor
- EGPWS GLIDE SLOPE | CFIT Precursor
- EGPWS PULL UP | CFIT Precursor
- EGPWS TOO LOW TERRAIN | CFIT Precursor
- EGPWS TOO LOW FLAPS | CFIT Precursor
- EGPWS BANK ANGLE | LOC-I Precursor
- EGPWS (ALL)
- Late Config setting at LDG | Runway Excursion Precursor
- Gear down selection height (Interception height above 2500 ft AGL)
- High Lateral Acceleration Events | ARC Precursor





LOSA uses trained observers to collect data about pilot behaviour and its situational context on "normal" flights from observers seats on the flight deck.

Such monitoring allows the capture of data which can characterise pilot strategies for managing "threats, errors and undesirable states".

The audits are conducted under strict no-jeopardy conditions; therefore, flight crews are not held accountable for their actions and errors that are observed. During flights that are being audited, observers record and code:

- Potential threats to safety;
- How the threats are addressed;
- The errors such threats generate;
- How flight crews manage these errors;
- Specific behaviours that have been known to be associated with accidents and incidents.

Royal Air Maroc next LOSA on Sept. 2023



### VII. | Accident Prevention Program | Other Safety levers

- I. Regular IATA Operational Safety Audit (IOSA)
- II. IATA Global Aviation Data Management Program integration (IDX : Incident Data Exchange, ADX : Accident Data Exchange, FDX : Flight Data Exchange) : IATA's safety and security incident data management program that enables use and benchmark of global and regional trend data analytics to set and manage Safety and Security Performance Targets.

#### III. Safety Collaboration with the oneworld Best Practices Safety Group (oBPSG)

Regular meetings and information sharing between group members about safety oneworld metrics updates and Top safety issues.

#### IV. Training

In order to enhance personal skills and abilities, Royal Air Maroc invested and is seeking to invest on professional development in the following topics:

- Safety Management System Training
- Safety Risk Assessment Training
- Accident & Incident Investigators
- Human Factors & Crew Resource Management Training
- Fatigue Risk Management System Training
- Root Cause Analysis



IDX

Incident Data eXchange





member of oneworld

On August 15, 2021, a safety investigation was triggered by VP Quality, Safety & Security after tires blowout at landing of RAM 1400 while Anti-skid system was Inoperative

#### Synoptic:

During landing of flight AT1400, operated by CN-RNP, on runway 06 at OUJDA-ANGADS airport on August 15, 2021, the crew was notified after landing by a cabin crew emergency call of an engine fire on the left side of the aircraft.

The crew immediately confirmed the information with the control tower and informed the fire-fighting services. After full stop of the aircraft, the crew applied the "ENGINE FIRE ON THE GROUND" checklist, and when it comes to evacuate, they were advised by the fire service that there was no fire, just smoke from the burst tires on the left landing gear, and that the situation did not require an emergency evacuation.

The aircraft remained grounded on runway 06 due to the burst tires. The aircraft had been dispatched with DDM 32-02-02 concerning a failure of the anti-skid system.



### VII. | Accident Prevention Program | Internal Safety Investigation Sample



Take off time from GMMN : **2211 z** Landing time at GMFO : **2259 z** Crew : **6** (2 PNT + 4 PNC) Total passengers on board: 141







Beginning of destruction of the internal tire 600 m from the threshold

Start of destruction of the outer tire 700 m from the threshold Beginning of traces of contact of the rim with the ground 800m from the threshold Aircraft immobilized 1500 m from the threshold



#### Captain Air Safety Report (ASR) :

AT1400 CNRNP dispatched with DDM 32-02-02 (HIL 1546-C) Allowed maximum take off weight 62.4T (landing limitation at OUD with application of the DDM via OPT 59.7T + trip). takeoff weight 60.5T. Landing weight 58.2T, Vref F40 132 kt, landing distance 2500m. After landing, while decelerating I received an emergency call from the cabin warning me of an engine fire on the left side, when the plane stopped we called the control tower and the fire. The aircraft remained on the axis until complete stop. We performed the CL engine fire on the ground, at the evacuation is needed item the firefighters were already on site around the plane and confirmed that there was no smoke or fire and that the area was secure, we then proceeded to a rapid disembarkation. Upon verification , we noticed that the two left tires had burst which led to the rims touching the ground and causing the sparks.

#### Internal Safety Investigation Sample



#### **Flight Data Analysis**



member of eneworks



#### Internal Safety Investigation Sample







#### **Root Cause Analysis:**

After a debriefing session with the crew, the analysis carried out by the Safety Management System department shows that the probable root cause of this event is the over braking input, which was not compatible with the length and conditions of the runway,

#### **Risk assessment:**

Using the ICAO risk assessment matrix:

Probability : **LOW** Severity : MAJOR Risk Index: <mark>3C</mark> Acceptability : **ACCEPTABLE WITH MITIGATION** 



#### **Safety Recommandations:**

- 1. A simulator session for the flight crew in conditions similar to those of the flight, to review with an instructor the braking with ANTI SKID INOP and the landing sequence as set by the manufacturer on Flight Crew Manuals.
- 2. Modify the MEL 32-02 so that it becomes a NOGO on departure from CMN home base .
- 3. Limit the number of sectors outside CMN to a maximum of 2, with MEL 32-02 is applied.
- 4. Rearrange wording of the new MEL taking into account these first two during **FLT/MNT OPS** coordination meetings.
- 5. Train the Antiskid Inoperative operational procedure during the recurrent simulator training (starting with session C).
- 6. Modify the B737 NG Antiskid Inoperative operating procedure to include the use of:
  - Flaps40.
  - Full available runway length.
  - Use maximum reverse thrust
  - Distribute an OSI "Safety bulletin" to all flight crews as feedback on the event



# THANK YOU

