

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

FTS supporting CCO-CDO local implementation plans

Rovshan Sultanov, Manager of Airspace Design and Development -dans

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

CCO-CDO

CCOs and CDOs are aircraft operating techniques enabled by airspace design, instrument procedure design and facilitated by air traffic control.

CDO

employ minimum engine thrust, ideally in a low drag configuration, prior to the final approach fix/ final approach point.

CCO

employ optimum climb engine thrust and climb speeds until reaching their cruising levels.

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

CCO-CDO Constraints for the implementation*

- Aircraft FMS capability
- Airline Policy / Crew training
- ATCO training
- ATC WL, predictability, DTG Info
- Capacity (network & local)
- Letters of Agreement
- Airspace/Procedure Design

- Parallel Runway Procedures
- Climb vs. Descent Optimization
- Military Airspace
- Geographical Constraints
- Safety
- Weather
- Human

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

What is FTS model: virtual and reliable models of ATM systems, airports and airspace.

When to use: to support daily operations and R&D activities, to support decisionmakers to get inside insights for airport and airspace issues and/or to assess different options

Why to use: Cost saving tool, requiring limited resources, quick what-if options available

To be noted:

- Models are highly dependent on the data used to drive them
- FTS exercises: multiple runs with randomized variations of a scenario
- Numerical/graphical output. Careful analysis and interpretation

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

CCO-CDO Constraints for the implementation*

Reference: Simulation Techniques For Arrival Procedure Design In Continuous Descent Operation

Daichi Toratani Navinda Kithmal Wickramasinghe Hiroko Hirabayashi Air Traffic Management Department Electronic Navigation Research Institute (ENRI) 7-42-23 Jindaijihigashimachi Chofu, Tokyo 182-0012, JAPAN

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

CCO-CDO Constraints for the implementation*

- Aircraft FMS capability
- Airline Policy / Crew training
- ATCO training
- ATC WL, predictability, DTG Info
- Capacity (network & local)
- Letters of Agreement
- Airspace/Procedure Design

- Parallel Runway Procedures
- Climb vs. Descent Optimization
- Military Airspace
- Geographical Constraints
- Safety
- Weather
- Human

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

Constraints addressed using FTS

- ✓ Identifying constrains for CDO/CCO implementation (ATC procedures? PANS OPS requirements? Airspace constrain)
- ✓ Calculate the possible range of the CDO/CCO trajectory
- ✓ Define altitude windows for CDO/CCO using by modelling different type of Aircraft
- \checkmark Define time window when CDO/CCO can be implemented
- ✓ Comparing ATC workload in CDO/CCO and conventional procedures
- ✓ Comparing Conflicts in CDO/CCO and conventional procedures
- ✓ Compare fuel consumption in CDO/CCO and conventional procedures
- ✓Assessing impact on airspace and airport operation

ICAO MID Workshop on the Continuous Climb Operations (CCO) / **Continuous Descent Operations (CDO) Implementation**

Abu Dhabi, UAE 13 – 14 June 2022

FTS study- Example ARRIVALS

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

FTS study- Example DEPARTURES

Baseline Scenario – Current Procedure - Sim

Scenario – CCO - Sim

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

FTS study- Example

"Fly" scenarios (runs)

Analyze & compare results

- Radar Controller Workload
- Sector entry/exit
- Distance flown
- Fuel burnt
- Delays
- Conflicts
- Etc.

	🥸 🐰 🂱 AirTOP Re	porter									
	Screate Defaults a AirTOP Reporter										
c	Events Event Statistics Logs & Plots Airspaces Airports Terminal Trajectories										
3	Change Watches Events Change Event Aggregates Change Watches										
	Tree Vi 💌 Max	items per	table 100000	Mir	n Time (Opt)			Max Time (Opt)		2 Refresh	🕹 Query
	ChangeEventSu	Select	ed ChangeEve	ntSummary - OMI	DB.FLIGHT.EN	DED.ARRIV	AL_DEL	AY_DATA			
	▶ Blockec Blockec Playback ✓ Excel mode 🗞 text to find										
	Airspace	#	Time	Aircraft	Old Flight F	Plan Phase	New F	ight Plan Phase	Callsign	Reference Time V	alue U
	Worklo	1	1 23:53:43	UAE607-2-0005	Landing		RwyDe	elerating	UAE607-2-0005	2 00:05:00	-0(*
	ATC Sector	2	2 00:00:18	GFA500-2-0010	Landing		RwyDe	elerating	GFA500-2-0010	2 00:10:00	-00
	Radar C	3	2 00:08:06	UAE353-2-0010	Landing		RwyDe	elerating	UAE353-2-0010	2 00:10:00	00
	Radar C	4	2 00:13:15	UAE784-2-0015	Landing		RwyDe	elerating	UAE784-2-0015	2 00:15:00	00
	Radar C	5	2 00:14:48	UAE585-2-0025	Landing		RwyDe	elerating	UAE585-2-0025	2 00:25:00	-00
	▶ Conflict	6	2 00:16:46	FDB2PE-2-0010) Landing		RwyDe	elerating	FDB2PE-2-0010	2 00:10:00	00
	▼ Flight	7	2 00:17:57	UAE393-2-0025	Landing		RwyDe	elerating	UAE393-2-0025	2 00:25:00	-00
	▶ Genera	8	2 00:19:26	UAE786-2-0035	Landing		RwyDe	elerating	UAE786-2-0035	2 00:35:00	-00
	Approa	9	2 00:21:11	UAE708-2-0020	Landing		RwyDe	elerating	UAE708-2-0020	2 00:20:00	00
	ATC Arr	∉ 10	2 00:23:00	UAE307-2-0030	Landing		RwyDe	elerating	UAE307-2-0030	2 00:30:00	-00
	ATC Arr	1 11	2 00:25:31	ETH612-2-0030	Landing		RwyDe	elerating	ETH612-2-0030	2 00:30:00	00

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

CCO flight performance

• Airbus A380-800 with engine GP7270 via ANVIX

 Boeing 777-300 with engine GE90-115B via ANVIX

ICAO MID Workshop on the Continuous Climb Operations (CCO) / Continuous Descent Operations (CDO) Implementation

Abu Dhabi, UAE 13 – 14 June 2022

THANK YOU

