Implementation
Lessons Learned
Main points

• Need focus on trim understanding, awareness, and use

• Have to control instructor mutations

• Need the RIGHT attitude
Top 10 lessons learning in 2016
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”
#9 – “Thrust avail drops with altitude more than you think”
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”
9 – “Thrust avail drops with altitude more than you think”
8 – “It is fine to reduce AoA when banked”
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”
9 – “Thrust avail drops with altitude more than you think”
8 – “It is fine to reduce AoA when banked”
7 – “AoA is often still positive when you are upside down”
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”
9 – “Thrust avail drops with altitude more than you think”
8 – “It is fine to reduce AoA when banked”
7 – “AoA is often still positive when you are upside down”
6 – “Aerodynamic stall does not depend on speed, bank…”
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”
9 – “Thrust avail drops with altitude more than you think”
8 – “It is fine to reduce AoA when banked”
7 – “AoA is often still positive when you are upside down”
6 – “Aerodynamic stall does not depend on speed, bank…”
5 – “Wow, this airplane can really buffet”
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”
9 – “Thrust avail drops with altitude more than you think”
8 – “It is fine to reduce AoA when banked”
7 – “AoA is often still positive when you are upside down”
6 – “Aerodynamic stall does not depend on speed, bank…”
5 – “Wow, this airplane can really buffet”
4 – “Many airplanes have little-to-no pitch break or rolloff”
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”
9 – “Thrust avail drops with altitude more than you think”
8 – “It is fine to reduce AoA when banked”
7 – “AoA is often still positive when you are upside down”
6 – “Aerodynamic stall does not depend on speed, bank…”
5 – “Wow, this airplane can really buffet”
4 – “Many airplanes have little-to-no pitch break or rolloff”
3 – “Rudder in upsets is often hazardous and unpredictable”
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”

9 – “Thrust avail drops with altitude more than you think”

8 – “It is fine to reduce AoA when banked”

7 – “AoA is often still positive when you are upside down”

6 – “Aerodynamic stall does not depend on speed, bank…”

5 – “Wow, this airplane can really buffet”

4 – “Many airplanes have little-to-no pitch break or rolloff”

3 – “Rudder in upsets is often hazardous and unpredictable”

2 – “The stall recovery template applies to all altitudes”
Summary of lessons learned in 2016

#10 – “Stall warning has a definition; not ‘AIRSPEED LOW’”
9 – “Thrust avail drops with altitude more than you think”
8 – “It is fine to reduce AoA when banked”
7 – “AoA is often still positive when you are upside down”
6 – “Aerodynamic stall does not depend on speed, bank…”
5 – “Wow, this airplane can really buffet”
4 – “Many airplanes have little-to-no pitch break or rolloff”
3 – “Rudder in upsets is often hazardous and unpredictable”
2 – “The stall recovery template applies to all altitudes”
1 – “Reducing angle of attack is the most important action”
Top 10 (I mean 17) lessons learning in 2018
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
9 – “Seeing good and bad bounce landing scenarios”
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
9 – “Seeing good and bad bounce landing scenarios”
8 – “Push buttons still have their pros and cons”
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
9 – “Seeing good and bad bounce landing scenarios”
8 – “Push buttons still have their pros and cons”
7 – “Some are trying to do too much in the first pass”
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
9 – “Seeing good and bad bounce landing scenarios”
8 – “Push buttons still have their pros and cons”
7 – “Some are trying to do too much in the first pass”
6 – “Still have variations in OEM recovery techniques”
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
9 – “Seeing good and bad bounce landing scenarios”
8 – “Push buttons still have their pros and cons”
7 – “Some are trying to do too much in the first pass”
6 – “Still have variations in OEM recovery techniques”
5 – “Taking a wait-and-see approach to sim maintenance”
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
9 – “Seeing good and bad bounce landing scenarios”
8 – “Push buttons still have their pros and cons”
7 – “Some are trying to do too much in the first pass”
6 – “Still have variations in OEM recovery techniques”
5 – “Taking a wait-and-see approach to sim maintenance”
4 – “Some flying sim to the simulator limit perceived”
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
9 – “Seeing good and bad bounce landing scenarios”
8 – “Push buttons still have their pros and cons”
7 – “Some are trying to do too much in the first pass”
6 – “Still have variations in OEM recovery techniques”
5 – “Taking a wait-and-see approach to sim maintenance”
4 – “Some flying sim to the simulator limit perceived”
3 – “Recovery targets can have unintended consequences”
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
9 – “Seeing good and bad bounce landing scenarios”
8 – “Push buttons still have their pros and cons”
7 – “Some are trying to do too much in the first pass”
6 – “Still have variations in OEM recovery techniques”
5 – “Taking a wait-and-see approach to sim maintenance”
4 – “Some flying sim to the simulator limit perceived”
3 – “Recovery targets can have unintended consequences”
2 – “Some not mixing it up with VMC/IMC or day/night”
Summary of lessons learned in 2018

#10 – “Have stall warning sync issues in some types”
9 – “Seeing good and bad bounce landing scenarios”
8 – “Push buttons still have their pros and cons”
7 – “Some are trying to do too much in the first pass”
6 – “Still have variations in OEM recovery techniques”
5 – “Taking a wait-and-see approach to sim maintenance”
4 – “Some flying sim to the simulator limit perceived”
3 – “Recovery targets can have unintended consequences”
2 – “Some not mixing it up with VMC/IMC or day/night”
1 – “The simulator is where we get everyone’s attention”
Summary of lessons learned in 2018

0 – “Some not respecting sim envelope limits”
Summary of lessons learned in 2018

0 – “Some not respecting sim envelope limits”
-1 – “Airbus motion-off recommendations does not meet reg,
Summary of lessons learned in 2018

0 – “Some not respecting sim envelope limits”
-1 – “Airbus motion-off recommendations does not meet reg,
-2 – “Still seeing occasional use of pedals”
Summary of lessons learned in 2018

0 – “Some not respecting sim envelope limits”
-1 – “Airbus motion-off recommendations does not meet reg,
-2 – “Still seeing occasional use of pedals”
-3 – “Recognize/confirm is often a forgotten first step”
Summary of lessons learned in 2018

0 – “Some not respecting sim envelope limits”
-1 – “Airbus motion-off recommendations does not meet reg,
-2 – “Still seeing occasional use of pedals”
-3 – “Recognize/confirm is often a forgotten first step”
-4 – “You should experience any force-feel changes”
Summary of lessons learned in 2018

0 – “Some not respecting sim envelope limits”
-1 – “Airbus motion-off recommendations does not meet reg,
-2 – “Still seeing occasional use of pedals”
-3 – “Recognize/confirm is often a forgotten first step”
-4 – “You should experience any force-feel changes”
-5 – “The community is short on good surprise scenarios”
Summary of lessons learned in 2018

0 – “Some not respecting sim envelope limits”
-1 – “Airbus motion-off recommendations does not meet reg,
-2 – “Still seeing occasional use of pedals”
-3 – “Recognize/confirm is often a forgotten first step”
-4 – “You should experience any force-feel changes”
-5 – “The community is short on good surprise scenarios”
-6 – “Seeing too much push too often”
What have we learned in the last year?
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
#19 – Not UPRT, but challenges arose on incorporating crosswind with gusts
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
#19 – Not UPRT, but challenges arose on incorporating crosswind with gusts
#18 – Not a requirement for trainee to identify when to recover from full stall
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
#19 – Not UPRT, but challenges arose on incorporating crosswind with gusts
#18 – Not a requirement for trainee to identify when to recover from full stall
#17 – Several V-n diagram rabbit holes
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
#19 – Not UPRT, but challenges arose on incorporating crosswind with gusts
#18 – Not a requirement for trainee to identify when to recover from full stall
#17 – Several V-n diagram rabbit holes
#16 – Simulators, right now, not good at teaching somatogravic illusion
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
#19 – Not UPRT, but challenges arose on incorporating crosswind with gusts
#18 – Not a requirement for trainee to identify when to recover from full stall
#17 – Several V-n diagram rabbit holes
#16 – Simulators, right now, not good at teaching somatogravic illusion
#15 – Airbus “automated stall entry” - a starting point, but not an ending point
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
#19 – Not UPRT, but challenges arose on incorporating crosswind with gusts
#18 – Not a requirement for trainee to identify when to recover from full stall
#17 – Several V-n diagram rabbit holes
#16 – Simulators, right now, not good at teaching somatogravic illusion
#15 – Airbus “automated stall entry” - a starting point, but not an ending point
#14 – One operator starting, not ending, full-stall training with shaker de-activated
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
#19 – Not UPRT, but challenges arose on incorporating crosswind with gusts
#18 – Not a requirement for trainee to identify when to recover from full stall
#17 – Several V-n diagram rabbit holes
#16 – Simulators, right now, not good at teaching somatogravic illusion
#15 – Airbus “automated stall entry” - a starting point, but not an ending point
#14 – One operator starting, not ending, full-stall training with shaker de-activated
#13 – For tailwind scenarios, it is all about timing on determining correct responses
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
#19 – Not UPRT, but challenges arose on incorporating crosswind with gusts
#18 – Not a requirement for trainee to identify when to recover from full stall
#17 – Several V-n diagram rabbit holes
#16 – Simulators, right now, not good at teaching somatogravic illusion
#15 – Airbus “automated stall entry” - a starting point, but not an ending point
#14 – One operator starting, not ending, full-stall training with shaker de-activated
#13 – For tailwind scenarios, it is all about timing on determining correct responses
#12 – Some relying on FSB report for UPRT decisions
Lessons learned in the last year

#23 – Still have ‘untrained UPRT’ FAA inspectors
#22 – Had challenges with operators flying less-common aircraft
#21 – Wikipedia does not have a monopoly on knowledge
#20 – ICAO has changed the definition of an upset; the FAA has not
#19 – Not UPRT, but challenges arose on incorporating crosswind with gusts
#18 – Not a requirement for trainee to identify when to recover from full stall
#17 – Several V-n diagram rabbit holes
#16 – Simulators, right now, not good at teaching somatogravic illusion
#15 – Airbus “automated stall entry” - a starting point, but not an ending point
#14 – One operator starting, not ending, full-stall training with shaker de-activated
#13 – For tailwind scenarios, it is all about timing on determining correct responses
#12 – Some relying on FSB report for UPRT decisions
#11 – Struggles with defining proficiency, namely in ‘return to desired flightpath’
Lessons learned in the last year

10 – Some not doing full stall training in all flight control modes
Lessons learned in the last year

10 – Some not doing full stall training in all flight control modes
9 – Many questions on best way to reduce pitch
Lessons learned in the last year

10 – Some not doing full stall training in all flight control modes
9 – Many questions on best way to reduce pitch
8 – Changed target speeds for slow flight in AC 120-111 (from Vref to Vmd)
Lessons learned in the last year

10 – Some not doing full stall training in all flight control modes
9 – Many questions on best way to reduce pitch
8 – Changed target speeds for slow flight in AC 120-111 (from Vref to Vmd)
7 – How can I find out the minimum drag speed?
Lessons learned in the last year

10 – Some not doing full stall training in all flight control modes
9 – Many questions on best way to reduce pitch
8 – Changed target speeds for slow flight in AC 120-111 (from Vref to Vmd)
7 – How can I find out the minimum drag speed?
6 – Pilots need to understand and experience feel system changes at some point
Lessons learned in the last year

5 – “Reduce AOA” (i.e., the guidance) still wins over “unload” or “push”
Lessons learned in the last year

5 – “Reduce AOA” (i.e., the guidance) still wins over “unload” or “push”
4 – Some pilots now saying “yes” when asked “do you want to see anything else”
Lessons learned in the last year

5 – “Reduce AOA” (i.e., the guidance) still wins over “unload” or “push”
4 – Some pilots now saying “yes” when asked “do you want to see anything else”
3 – See the most pilot difficulties in the unreliable airspeed scenarios
Lessons learned in the last year

5 – “Reduce AOA” (i.e., the guidance) still wins over “unload” or “push”
4 – Some pilots now saying “yes” when asked “do you want to see anything else”
3 – See the most pilot difficulties in the unreliable airspeed scenarios
2 – Trim understanding, awareness, and use needs more focus
Lessons learned in the last year

5 – “Reduce AOA” (i.e., the guidance) still wins over “unload” or “push”
4 – Some pilots now saying “yes” when asked “do you want to see anything else”
3 – See the most pilot difficulties in the unreliable airspeed scenarios
2 – Trim understanding, awareness, and use needs more focus
1 – Have to control instructor mutations
 - Not noticing getting outside simulator envelope
 - Not diagnosing significant errors (e.g., rolling pullouts, steps out of order)
 - Not understanding the new instructor operating station
 - Not training to proficiency
 - Not understanding what proficiency is
Math: Central Limit Theorem
Math: Central Limit Theorem

Average

Below average
Above average
Psychology: Central Limit Theorem application

People in this room

Pilot judgement
Psychology: Central Limit Theorem application

People in this room

Below average

Average

Above average

Pilot judgement
Psychology: Central Limit Theorem application

People in this room

Raise your hand if you think you are here

Average

Below average

Above average

Pilot judgement
Psychology: Central Limit Theorem application

Raise your hand if you think you are here

Need the right attitude!

People in this room

Average

Below average

Above average

Pilot judgement
Conclusions

• Need focus on trim understanding, awareness, and use

• Have to control instructor mutations

• Need the RIGHT attitude