

Mode S Surveillance Principle

Surveillance/MICA Workshop

Jérôme Bodart 26-28 February 2019

Objective

- Description of the key technical principles of Mode S radar
 - Lockout,
 - Interrogator Code (IC)
 - more details in "Operation on II and SI Code, II/SI Code Operation"
 - Coverage Maps
 - more details in "Mode S Radar Coverage"
 - Clusters
- Description of Mode S radar operation, interrogations and replies
- Overview of other surveillance systems:
 - ADS-B
 - Multilateration (WAM)
 - Airborne Collision Avoidance System (ACAS)

S = Selective

- Selectively communicate with individual aircraft
- Unique Mode S address for each aircraft (24-bit address)
 - Allocated by the State at registration
- An 'address' for Mode S radar (IC = Interrogator Code)
 - Provided by the EUROCONTROL MICA (Mode S Interrogator Code Allocation) Cell
- Backward compatible with old systems (Mode AC)

Mode S and Mode AC Interrogations and Replies

Mode S and Mode AC interoperability

Mode S radar interrogations

1. ACQUISITION

A Mode S radar sends All-Call interrogations to detect and acquire incoming aircraft:

- Broadcast interrogations \rightarrow addressed to all aircraft
- Aircraft reply with its 24bit Mode S address

2. <u>SELECTIVE INTERROGATIONS</u>

Once acquired, the Mode S radar sends selective interrogations to the aircraft using the 24bit Mode S address received during the acquisition

3. LOCKOUT

Once acquired, the Mode S radar locks the aircraft to prevent it to reply to All-Call interrogations (lockout request in selective interrogations)

• All-Call replies are useless once the radar has acquired the aircraft.

Aircraft acquisition, selective interrogations and EUROCONTROL lock-out Radar Surveillance Coverage Aircraft acquired by Radar Radar Lockout Coverage on IC = xAircraft locked by Radar on IC = x+ -

- Aircraft not in line of sight of radar or not in power budget \rightarrow does not receive All-Call interrogations (broadcast)
- Aircraft outside surveillance coverage -> receives All-Call interrogations (broadcast) and replies, but replies not processed by radar
- Aircraft acquired by radar in surveillance coverage
- → selective interrogations (Roll-Call)
- → not locked: receive All-Call interrogations and replies
- Aircraft locked by radar in lockout coverage
- → does not reply to All-Call interrogations

Line of Sight

SSR coverage is limited by <u>Line of Sight</u>

- Cone of Silence (or 'Overhead Gap')
- Min & Max Elevations (e.g. 0 to 60 degrees)
 - Depends on antenna design and configuration
- Obstacles

Aircraft Acquisition using All-Call

- 1. Mode S radar sends All-Call interrogations (UF11) to all aircraft (broadcast).
 - UF11 contains the IC (II or SI code) allocated to the Mode S radar
- 2. Mode S aircraft receives the All-Call interrogation and decodes the IC.
 - If it is not locked on this IC, the aircraft replies to the All-Call interrogation (All-Call reply – DF11).
 - The IC of the Mode S radar and the 24bits Mode S address of the aircraft are contained in the All-Call replies.
- Mode S radar receives All-Call replies containing its own allocated IC
 - Decodes the 24bits Mode S address of the aircraft
 - Computes the aircraft position (range, azimuth)
- ➔ The aircraft is acquired

Mode S Only All-Call Interrogation (UF 11) – 56 bits

Mode S Only All-Call Reply (DF 11) – Short: 56 bits

Stochastic Acquisition and Lockout Override

- Stochastic Acquisition
 - Used for acquiring targets close in range
 - Probability of reply in All-Call interrogation
- Lockout Override
 - Disregard aircraft lockout on IC in All-Call interrogation
 - Can be stochastic
 - Can be applied by sector
 - Sectorised lockout override by azimuth sector
 - Should not be used except for fall-back (e.g. in case of IC conflict)

Stochastic Acquisition

Stochastic S/2 Interrogations with 50% set as PR

- A and B both reply Replies overlap in time Both are garbled and lost
- A decides No Reply (50%)B replies

B acquired and locked out

(4)

B is locked out A decides No Reply (50%)

- B is locked out
- A replies
- A acquired and locked out

Selective Interrogations and Lockout

- Once an Mode S aircraft is acquired, the Mode S radar knows:
 - 24bit Mode S address of the aircraft
 - Position of the aircraft (range/azimuth)
- The Mode S radar sends selective interrogations to the aircraft using the 24bit Mode S address:
 - Only the aircraft having the correct 24bit Mode S address replies
 - Request Mode A Code or Altitude (Mode C)
 - Lockout request to prevent the aircraft to reply to All-Call interrogations from the same radar (on the IC of the radar)
 - All-Call replies are useless once the radar has acquired the aircraft.
 - May request the transfer of aircraft registers
 - BDS (Comm-B Data Selector)

Selective Interrogation and Reply Format

Surveillance Interrogation (UF 4 or 5) - 56 bits

UF 4,5 Altitude Request or	UF:5	PC:3	RR:5	DI:3	SD:16	AP:24		
Identity Request	AP: parity overlaid on the aircraft address + II/SI code, lockout and BDS extraction							

Surveillance Reply (DF 4 or 5) – Short: 56 Bits (no BDS extraction)

DF 4,5 Altitude Reply or Identity Reply	DF:5	FS:3	DR:5	UM:6	AC or ID:13	AP:24

Comm-B Reply (DF 20 or 21) – Long: 112 Bits (content of BDS – MB:56)

Mode S Surveillance Principle

All-Call Period vs. Mode-S Period (1)

Note: The Mode S Period is also known as the Roll-Call Period

EUROCONTROL

All-Call Period vs. Mode S Period (2)

The length of the All-Call period must be AT LEAST long enough to allow an all-call interrogation and reply sequence to complete (radar range). More information in "Radar programming – MIP"

Mode S and Mode AC all-calls can be sent in the same All-Call period

Elementary Surveillance (ELS)

- Basic Surveillance functionality
 - 24-bit technical identification
 - Mode A code
 - Altitude reporting to 25ft (Mode C)
 - Transponder capability reports
 - Datalink capability report (BDS 1,0)
 - Common usage GICB report (BDS 1,7)
 - Aircraft Identification call sign (BDS 2,0)
 - Flight status (airborne / on the ground)
 - Including Emergency situations + SPI
 - SI-Code functionality

ELS Registers

- The BDS registers required for Elementary surveillance are:
 - BDS 1,0 Data Link Capability Report
 - BDS 1,7 Common Usage GICB Capability Report and
 - BDS 2,0 Aircraft Identification
- The provision of these registers is mandated for all aircraft
- These registers are requested in the first selective interrogations
 - typically 3 selective interrogations in the same beam once the aircraft is acquired
- The content of these registers should not change under normal flight conditions
 - If it does, it should be broadcasted
- EHS register availability known from BDS 1,7

Enhanced Surveillance (EHS)

3 BDS registers are in general regularly extracted

- BDS 4,0 Selected Vertical Intention
 - Selected Altitude
 - Barometric Pressure Settings
- BDS 5,0 Track and Turn
 - Roll Angle
 - True Track Angle
 - Ground Speed
 - Track Angle Rate
 - True Airspeed
- BDS 6,0 Heading and Speed
 - Magnetic Heading
 - Indicated Airspeed
 - Mach
 - Barometric Altitude Rate
 - Inertial Vertical Rate

Cluster – operating stations together

If an aircraft is in the cover of several radars, then they could share that information via ground data links.

Cluster Principle (1)

Cluster Principle (2)

Example of Cluster

ACAS / TCAS

- Airborne Collision Avoidance System (ACAS)
- Traffic alert and Collision Avoidance System (TCAS)
 - TCAS is an airborne device
 - Requires a Mode S transponder on-board
- TCAS provides collision avoidance protection
 - Traffic Advisories visual acquisition of intruder aircraft
 - Resolution Advisory recommended escape manoeuvres in the vertical dimension
- TCAS relies on Acquisition Squitters to acquire aircrafts in vicinity

TCAS Active Surveillance

- TCAS sends Mode S interrogations (UF 0) to the acquired aircraft (intruder) to get the range, bearing and altitude
- The transponder of the acquired aircraft replies with a DF 0, containing its altitude
- The rate of TCAS interrogations to a Mode S aircraft depends on the range and the closure rate.
 - Between 1 interrogation every 5 seconds and 1 interrogation per second

TCAS Hybrid Surveillance (DO-300)

- TCAS with Hybrid Surveillance use passive surveillance to track intruders not in near-term collision
 - Use valid barometric altitude and position received in DF17 Extended Squitters to acquire and monitor the aircraft
 - Decrease Mode S surveillance interrogations done by TCAS (UF 0) and replies (DF 0)
 - Once the intruder come close to being a collision threat, it is tracked with active surveillance
- Aircraft not broadcasting DF17 Extended Squitters are tracked actively

DO-300 – Hybrid Surveillance

TCAS Extended Hybrid Surveillance (Future)

- TCAS use DF17 Extended Squitters (ADS-B) to acquire and monitor the aircraft
 - Decrease the number of interrogations (UF 0) and replies (DF 0)
 - No interrogations in Extended Hybrid Surveillance (passive)
 - Depends on data quality and ADS-B Version Number
 - Extended Hybrid Surveillance if ADS-B Version Number ≥ 2

DO-300A – Extended Hybrid Surveillance

TCAS Resolution Advisory

- In case of Resolution Advisory, long Mode S messages are exchanges for coordination:
 - TCAS interrogations: UF 16
 - Transponder replies: DF 16

- Broadcast per aircraft of parameters
 - DF17 Extended Squitters (long Mode S message) on 1090MHz
- When aircraft is airborne, typically
 - Airborne position 2 per second
 - Airborne Velocity 2 per second
 - ACID 1 every 5 seconds
 - Max 6.2 extended squitters per second
- For vehicles without transponder
 - DF18 Extended Squitter is used to broadcast parameters

ADS-B Equipage

- Not all aircraft are equipped with ADS-B
- Different versions of ADS-B
 - v0 and v1 have very few quality indicators
 - The position may not be reliable
 - v2 provides good position indicators

SUR Equipage per flight over Paris 2018

ADS-B Surveillance Equipage Evolution

Multilateration

- Signal transmitted by aircraft transponder and received at several sensors
 - Time Difference of Arrival (TDOA) measurements by ground sensors
 - Central processor calculates aircraft position
- Multi-Lateration is common in Europe
 - Mainly uses squitters for deriving position
 - Mainly short range systems at airport
 - Wide area systems are emerging
- Active interrogation is common

MLAT Brno

Active Multilateration Systems

- Independent of existing infrastructure
- Improved detection of Mode A/C only aircraft
- **<u>Complementary</u>** information to position (Mode A, Mode C, A/C ID)
- Increase accuracy at long range
- Care must be taken
 - not to generate excess 1030/1090MHz FRUIT
 - <u>not to over occupy</u> the Transponder (due to selective interrogations)