

International Civil Aviation Organization
MIDANPIRG Meteorology Sub-Group
Sixth Meeting (MET SG/6)
(Cairo, Egypt, 1-3 March 2016)

Agenda Item 4.6: Review of the MET Provisions in the MID electronic Air Navigation Plan REVIEW OF THE MID ELECTRONIC AIR NAVIGATION PLAN (MID eANP) - MET PART
(Presented by the Secretariat)

SUMMARY
This paper presents a status on the new MID Air Navigation Plan (MID eANP).
The meeting is expected to review the MET Part and where necessary, provide
updates.
Action by the meeting is at paragraph 3.
- REFERENCES
- \quad MIDANPIRG/15 Report
- \quad State Letter Ref.: AN 5-6-7-8-10-13/5A - 15/300 dated 18 November 2015
$-\quad$ State Letter Ref.: AN 5-6-7-8-10-13/5A - 15/339 dated 21 December 2015
$-\quad$ State Letter Ref.: AN 5-6-7-8-10-13/5A - 16/055 dated 14 February 2016
$-\quad$ State Letter Ref.: AN 5-6-7-8-10-13/5A - 16/057 dated 15 February 2016

1. INTRODUCTION

1.1 The 12th Air Navigation Conference (AN-Conf/12), through Recommendation 6/1 [Regional performance framework - planning methodologies and tools], agreed that the regional air navigation plans (ANP) be aligned with the Fourth Edition of the Global Air Navigation Plan (GANP) (Doc 9750).
1.2 The ICAO Council approved the new eANP Template (Volumes I, II and III) and corresponding procedure for amendment on 18 June 2014 ($202^{\text {nd }}$ session, fourth meeting).

2. DISCUSSION

2.1 The meeting may wish to recall that MIDANPIRG/14, through Decision $14 / 24$, agreed that the development of the MID eANP based on the Council-approved ANP Template, be included in the work programme of the different MIDANPIRG subsidiary bodies and the relevant Parts of the MID eANP be presented, as soon as available, to MSG/4 and/or MIDANPIRG/15 for endorsement.
2.2 The meeting may wish to note that the ANP WG/2 meeting (Cairo, Egypt, 16-18 December 2014) reviewed and updated VOL I, II and III of the MID eANP, consolidated by the Secretariat based on the Council approved Template and inputs received from the different MIDANPIRG subsidiary bodies (AIM SG/1, ATM SG/1, CNS SG/6 and MET SG/5).
2.3 The meeting may wish to recall that, the MIDANPIRG/15 meeting reviewed and endorsed the MID eANP VOL I, II and III and agreed to the following Conclusion:

Conclusion 15/11: ENDORSEMENT OF THE MID eANP

That,
a) the new MID ANP VOL I, II and III available at: http://www.icao.int/MID/MIDANPIRG/Pages/Final\ Report/MIDeANP.aspx are endorsed; and
b) the ICAO MID Regional Office process the necessary Proposals for Amendment, in accordance with the procedure for amendment approved by the Council, for formal approval by the end of 2015.
2.4

ICAO MID Regional Office, as a follow-up action to MIDANPIRG Conclusion 15/11, issued the Proposals for Amendment (PfA) Ref.: AN 5-6-7-8-10-13/5A - 15/300 to the MID eANP Volume I on 18 November 2015. The approval of this PfA was communicated to States (Ref.: AN 5-6-7-8-10-13/5A - 15/349) on 23 December 2015.
2.5 ICAO MID Regional Office further issued the PfA Ref.: AN 5-6-7-8-10-13/5A 15/339 to the MID eANP Volume II on 21 December 2015. The approval of this PfA Ref.: AN 5-6-7-8-10-13/5A - 16/055 was communicated to States on 14 February 2016.
2.6 The meeting may wish to note that the approval of the MID eANP VOL III was issued on 15 February 2016 (Ref.: AN 5-6-7-8-10-13/5A - 16/057).
2.7 The introduction and Part MET of VOL I, II and III are extracted from the MID eANP, as at Appendix A, B and C, respectively. Note that the General Planning Aspects (GEN) Part was also included in the extract for VOL III. The meeting is expected to review these appendices and provide updates, as deemed necessary. MID eANP VOL I, II and III are available at: http://www.icao.int/MID/Pages/MIDeANP.aspx

3. Action by the Meeting

3.1 The meeting is invited to review and update, as deemed necessary, the MET Part of the MID eANP Volumes I, II and III at Appendix A, B and C, respectively.

APPENDIX A

MID AIR NAVIGATION PLAN

VOLUME I

MID AIR NAVIGATION PLAN

VOLUME I

TABLE OF CONTENTS

PART 0 - Introduction 0-1
Appendix A - Procedure for the Amendment of Regional Air Navigation Plans 0-A-1
PART I — General Planning Aspects (GEN) I-1Table GEN I-1 — List of Flight Information Regions (FIR)/Upper InformationRegions (UIR) in the MID Region
PART II - Aerodromes / Aerodrome Operations (AOP) II-1
Introduction II-1
General Regional Requirements II-2
Specific Regional Requirements II-2
Table AOP I-1 — International Aerodromes required in the MID Region
PART III — Communications, Navigation and Surveillance (CNS) III-1
Introduction III-1
General Regional Requirements III-2
Specific Regional Requirements III-3
PART IV — Air Traffic Management (ATM) IV-1
Introduction IV-1
General Regional Requirements IV-1
Specific Regional Requirements IV-2
Table ATM I-1 — Flight Information Regions (FIR)/Upper Flight Information Regions (UIR) in the MID Region
Chart ATM I-1 — Flight Information Regions (FIR)/Upper Flight Information Regions (UIR) in the MID Region
PART V — Meteorology (MET) V-1
Introduction V-1
General Regional Requirements V-1
Specific Regional Requirements V-2
Table MET I-1 — State Volcano Observatories
PART VI — Search and Rescue Services (SAR) VI-1
Introduction VI-1
General Regional Requirements VI-1
Specific Regional Requirements VI-2
Table SAR I-1 — Search and Rescue Regions (SRR) in the MID Region
Chart SAR I-1 — Search and Rescue Regions (SRR) in the MID Region
PART VII — Aeronautical Information Management (AIM) VII-1
Introduction VII-1
General Regional Requirements VII-2
Specific Regional Requirements VII-2

MID ANP, VOLUME I PART 0 - INTRODUCTION

1. GENERAL

1.1 On 18 June 2014, the ICAO Council decided that the regional air navigation plans (ANPs) should be published in three volumes.
1.2 ANP Volume I contains stable plan elements whose amendment necessitates approval by the Council such as the assignment of responsibilities to States for the provision of aerodrome and air navigation facilities and services in accordance with Article 28 of the Convention on International Civil Aviation (Doc 7300); and the current to medium term mandatory regional requirements related to aerodrome and air navigation facilities and services to be implemented by States in accordance with regional air navigation agreements and requirements specific to the region which are not covered in the ICAO Standards and Recommended Practices (SARPs) and Procedures for Air Navigation Services (PANS). The material to be included in Volume I should minimise the requirement for frequent amendment. The following is a non-exhaustive list of such elements:

- Flight Information Regions (FIR) boundaries (Table and Charts);
- \quad Search and Rescue Regions (SRR) boundaries (Table and Charts);
- Volcanic Ash Advisory Centres (VAAC);
- \quad Tropical Cyclone Advisory Centres (TCAC); and
- Volcano Observatories (VO).
1.3 ANP Volume II contains dynamic plan elements material related to the assignment of responsibilities to States for the provision of aerodrome and air navigation facilities and services and the current to medium term mandatory regional requirements related to aerodrome and air navigation facilities and services to be implemented by States in accordance with regional air navigation agreements involving the relevant PIRG. The amendment of these elements does not require approval by the Council. The following is a non-exhaustive list of such elements:
- Major traffic flows;
- ATS route network;
- Meteorological Watch Offices (MWO);
- Secondary Surveillance Radar (SSR) codes;
- Five-letter name-codes; and
- VOLMET Broadcasts.
1.4 ANP Volume III contains dynamic/flexible plan elements providing implementation planning guidance for air navigation systems and their modernization taking into consideration emerging programmes such as the ICAO Aviation System Block Upgrades (ASBUs) and associated technology roadmaps described in the Global Air Navigation Plan (GANP) (Doc 9750). The ANP Volume III would also include appropriate additional guidance, particularly with regard to implementation, to complement the material contained in the ANP Volumes I and II. The amendment of Volume III would not require approval by the Council (approval of Part II is under the responsibility of the relevant PIRG).

Note 1: The ANP does not list all facilities in the region(s) but only those required for international civil aviation operations. Documents from the Integrated Aeronautical Information Package and other States publications should be consulted for information on additional facilities and for operational information in general.

Note 2: The general structure of the regional plans for the parts which concern an air navigation field in Volumes I and II consists of an "Introduction", "General Regional Requirements" and "Specific Regional Requirements". Only Tables shown under "General Regional Requirements" are harmonized for all Regions. Should a Region require a Table for a specific field, this should be reflected under "Specific Regional Requirements" of the subject concerned. The naming convention for such tables consists of the technical field concerned (AOP, CNS, ATM, MET, SAR and AIM), the ANP Volume number
(I or II), the Region (APAC, AFI, CAR/SAM, EUR, MID, NAM and NAT) and the consecutive number of the table. Examples are as follows: Table ATM I-EUR-1, Table CNS II-MID-1 or Table MET I-AFI-2.
1.5 Guidance material on the detail of programmes or concepts should be contained in supplementary material referenced appropriately or adopted as MID Documents.

2. RELATIONSHIP BETWEEN THE GLOBAL AND REGIONAL AIR NAVIGATION PLANS

2.1 The ANPs represent the bridge between, on one side, the global provisions in the ICAO SARPs and the GANP, and on the other side, the States' air navigation plans and implementation status.
2.2

The GANP represents a rolling, 15-year strategic methodology which leverages existing technologies and anticipates future developments based on State/industry-agreed operational objectives. The GANP is an overarching framework that includes key aviation policy principles to assist ICAO Regions, sub-regions and States with the preparation of their regional and State air navigation plans and to support the establishment of air navigation priorities.

3. OBJECTIVE AND PURPOSE OF REGIONAL AIR NAVIGATION PLANS

3.1 The ANPs provide for the planning and implementation of air navigation systems within a specified area, in accordance with the agreed global and regional planning framework. They are developed to meet those needs of specific areas not covered in the worldwide provisions. The development and maintenance of the ANPs is undertaken by ICAO PIRGs with the assistance of the ICAO Secretariat.
3.2 The ANPs are used as a repository Document for the assignment of responsibilities to States for the provision of air navigation facilities and services within a specified area in accordance with Article 28 of the Convention on International Civil Aviation (Doc 7300).
3.3 The ANPs contain requirements related to the facilities and services to be implemented by States in accordance with regional air navigation agreements. The procedural parts of ANPs are published in the ICAO Regional Supplementary Procedures (SUPPs) (Doc 7030).
3.4

The ANPs contain provisions that States can follow in the planning of aerodrome and air navigation facilities and services activities, with the assurance that facilities and services furnished in accordance with the plan will form with those of other States an integrated system adequate for the foreseeable future.
3.5 The ANPs may serve as a legal basis for air navigation services charges which are levied for services provided or made available to users, in accordance with ICAO's Policies on Charges for Airports and Air Navigation Services (Doc 9082) and ICAO Manual on Air Navigation Services Economics (Doc 9161).
3.6 The ANPs support the performance-based approach to planning adopted by ICAO to measure the efforts made by States in implementing the agreed requirements.

4. MANAGEMENT AND AMENDMENT OF REGIONAL AIR NAVIGATION PLANS

4.1 The elements of the existing planning system and the planning principles, operational requirements and planning criteria as developed for the MID Region are kept under constant review by the MIDANPIRG in accordance with its schedule of meetings, in consultation with provider and user States and with the assistance of the ICAO MID Regional Office.
$4.2 \quad$ The detailed amendment procedure of the three ANP Volumes is described in paragraph 5 below.

5. PROCEDURE FOR THE AMENDMENT OF REGIONAL AIR NAVIGATION PLANS

5.1 The procedure for the amendment of regional air navigation plans in three Volumes as approved by the Council is shown in Appendix A.

6. ABBREVIATIONS

6.1 The abbreviations used in this document are contained in the Procedures for Air Navigation Services - ICAO Abbreviations and Codes (PANS-ABC) (Doc 8400), with the exception of those used in the explanations of any tables appearing herein, which also give their meaning.

7. ESTABLISHMENT AND PROVISION OF A MULTINATIONAL ICAO AIR NAVIGATION FACILITY/SERVICE

7.1 The operation of multinational air navigation services is well established within the MID Region. The ICAO Manual on Air Navigation Services Economics (Doc 9161) details the ICAO policies on charges for air navigation services and provides additional information on the various models adopted globally. The introduction of multinational air navigation services does not dilute the principle that a State has the responsibility of overseeing the provision of air navigation services and that it shall maintain that responsibility within its sovereign airspace as well as within the airspace over the high seas for which it has accepted the responsibility for the provision of services. Where there is no intention to change or modify the FIR boundaries nor the facilities and services currently listed in the ANP there is not a requirement to amend the ANP. However, should changes to the FIR boundaries or to the facilities and services provided be required, such changes are likely to be subject to the ANP amendment procedure and should therefore be examined on a case-by-case basis. Advice on this issue can be obtained from the ICAO Regional Office(s). Any multinational arrangements for the provision of air navigation services should be registered with ICAO (Article 83 of the Convention (Doc 7300) and Rules for Registration with ICAO of Aeronautical Agreements and Arrangements (Doc 6685)).

APPENDIX A - PROCEDURE FOR THE AMENDMENT OF REGIONAL AIR NAVIGATION PLANS

(Approved by Council on 18 June 2014)

1. Introduction

1.1. The procedure outlined below has been evolved to provide a means of maintaining the regional air navigation plans using an ANP web based platform.

2. General criteria

2.1. The Assembly has resolved that regional plans should be revised when it becomes apparent that they are no longer consistent with current and foreseen requirements of international civil aviation and that, when the nature of a required change permits, the associated amendment of the regional plan should be undertaken by correspondence between the Organization and the States and international organizations concerned.
2.2. When a State cannot immediately implement a particular part or a specific detail of a regional plan although it intends to do so, when practicable, this in itself should not lead to the State proposing an amendment to the plan.
2.3. The general structure of the regional plans for the parts which concern an air navigation field in Volumes I and II consists of an "Introduction", "General Regional Requirements" and "Specific Regional Requirements". As the section "General Regional Requirements" is harmonized for all regions, an amendment of the provisions (text) in "General Regional Requirements" will lead to amendment of Volumes I and II of the regional plans of all regions.
2.4. The amendment process of Volume III is under the responsibility of the relevant Planning and Implementation Regional Group (PIRG). The Parts 0 (Introduction) and I (General Planning Aspects) of Volume III are harmonized for all regions and the amendment of these parts should be made following interregional coordination.

3. User rights

3.1. Access to the ANP web based platform to develop and submit amendment proposals to the regional plan and to comment on an officially issued amendment proposal should be provided through controlled access by the State's or international organization's designated Focal Points. The State or international organization should officially inform their respective Regional Office of the registration of their designated Focal Points.

4. States and international organizations to be consulted

4.1. The Secretary General, through the relevant Regional Office, will determine the States and international organizations to be consulted on the amendment proposal. These will generally only include the provider and user States and international organizations that have a direct and obvious interest in the amendment in question.

PART A - AIR NAVIGATION PLANS, VOLUME I

5. Procedure for amendment of Volume I

5.1. If, in the light of the above general criteria, any State (or group of States) wishes to effect a change in the approved air navigation plan for that region, it should propose to the Secretary General, through the Regional Office accredited to that State, an appropriate amendment to the plan, adequately documented; the proposal should include the facts that lead the State (or group of States) to the conclusion that the amendment is necessary. Such amendments may include additions, modifications or deletions. (This procedure does not preclude a State having previous consultation with other States before submitting an amendment proposal to the Regional Office.) This proposed amendment should be submitted via the web based tool and/or by correspondence to the Regional Office.
5.2. Upon studying the proposal, if the Secretary General considers that the proposed amendment requires further coordination through the relevant Planning and Implementation Regional Group (PIRG), the proposal will be presented, adequately documented, to the PIRG. The views of the PIRG will be coordinated with the originating State and the proposed amendment will be uploaded via the ANP web based platform for processing proposals for amendment for approval by the Council.
5.3. If the proposal concerns an amendment of the provisions (text) in "General Regional Requirements", the Secretary General will coordinate and circulate, through all Regional Offices, an amendment of all the regional plans.
5.4.

If the Secretary General considers that the proposed amendment conflicts with established ICAO policy, or that it raises questions which the Secretary General considers should be brought to the attention of the Air Navigation Commission, the proposal will be presented, adequately documented, to the Commission. In such cases, the Commission will decide the action to be taken on the proposal.
5.5. The Secretary General, through the Regional Office, will circulate the proposal, adequately documented, with a request for comments to all provider and user States of the region considered affected as well as to user States outside the region and international organizations which may be invited to attend suitable ICAO meetings and which may be concerned with the proposal. The States and international organizations concerned should either send their comments/agreement/objection via the ANP web based platform and/or by correspondence to the Regional Office. Any comment or objection should be adequately supported by reasons for the comment or objection.
5.6. If, in reply to the Secretary General's inquiry, no objection is raised to the proposal by a specified date, the proposal should be submitted to the President of the Council, who is authorized to approve the amendment on behalf of the Council. The approved amendment should be incorporated into Volume I of the regional plan.
5.7. If, in reply to the Secretary General's inquiry, any objection is raised, and if objection remains after further consultation, the matter will be documented for discussion by the respective planning and implementation regional group (PIRG) and, ultimately for formal consideration by the Air Navigation Commission, if it remains unresolved. If the Commission concludes that the amendment is acceptable in its original or other form, it will present appropriate recommendations to the Council.
5.8.

Proposals for the amendment of Volume I of the regional plan submitted by international organizations directly concerned with the operation of aircraft, which may be invited to attend suitable ICAO meetings and which attended the meeting(s) where the relevant regional plan is managed, will be dealt with in the same manner as those received from States, except that, before circulating a proposal to States and selected international organizations, the Secretary General will ascertain whether it has adequate support from the State or States whose facilities will be affected. If such support is not forthcoming, the proposal will be presented to the Commission, and the Commission will decide on the action to be taken on the proposal.
5.9. Proposals for the amendment of Volume I of the regional plan may also be initiated by the Secretary General, through the Regional Office accredited to that State, provided that the State or States whose facilities will be affected have expressed their concurrence with the proposal.
5.10. Amendments to Volume I of the regional plan which have been approved in accordance with the above procedure will be published in the ANP web based platform at convenient intervals.

PART B - AIR NAVIGATION PLANS, VOLUME II

6. Procedure for amendment of Volume II

6.1. Amendments of Volume II of the regional plan should be effected on the basis of an adequately documented proposal submitted by a State (or a group of States) or the relevant PIRG to the Secretary General, through the Regional Office accredited to that State. The proposal should include the facts that lead to the conclusion that the amendment is necessary. Such amendments may include additions, modifications or deletions to Volume II of the regional plan. (This procedure does not preclude a State having previous consultation with other States before submitting an amendment proposal to the Regional Office.) This proposed amendment should be submitted via the ANP web based platform and/or by correspondence to the Regional Office.
6.2. If the proposal concerns an amendment of the provisions (text) in "General Regional Requirements", the Secretary General will coordinate and circulate, through all Regional Offices, an amendment of all the regional plans.
6.3. The ICAO Regional Office will circulate the proposal, adequately documented, with a request for comments to all provider and user States of the region considered affected as well as to user States outside the region and international organizations which may be invited to attend suitable ICAO meetings and which may be concerned with the proposal. The States and international organizations concerned should either send their comments/agreement/objection via the ANP web based platform and/or by correspondence to the Regional Office. Any comment or objection should be adequately supported by reasons for the comment or objection.
6.4. If, in reply to the ICAO Regional Office's inquiry, no objection is raised to the proposal by a specified date, it will be deemed that a regional agreement (involving the relevant PIRG) on the subject has been reached and the proposed amendment should be incorporated into Volume II of the regional plan.
6.5. If, in reply to the ICAO Regional Office's inquiry, any objection is raised, and if objection remains after further consultation, the matter will be documented for discussion by the respective planning and implementation regional group (PIRG) and, ultimately for formal consideration by the Air Navigation Commission, if it remains unresolved. If the Commission concludes that the amendment is acceptable in its original or other form, it will present appropriate recommendations to the Council.
6.6.

Proposals for the amendment of Volume II of the regional plan submitted by international organizations directly concerned with the operation of aircraft, which may be invited to attend suitable ICAO meetings, where the relevant regional plan is managed, will be dealt with in the same manner as those received from States, except that, before circulating a proposal to States and selected international organizations, the Secretary General will ascertain whether the proposal has adequate support from the State or States whose facilities or services will be affected. If such support is not forthcoming, the proposal will not be pursued.
6.7. Proposals for the amendment of Volume II of the regional plan may also be initiated by the Secretary General, through the Regional Office accredited to that State, provided that the State or States whose facilities or services will be affected have expressed their concurrence with the proposal.
6.8. Amendments to Volume II of the regional plan which have been approved in accordance with the above procedure will be published in the ANP web based platform at convenient intervals.

PART C - AIR NAVIGATION PLANS, VOLUME III

7. Procedure for amendment of Volume III

7.1. Amendments of Volume III of the regional plan are under the responsibility of the relevant Planning and Implementation Regional Group (PIRG) and not subject to a formal application of the procedure for amendment of the ANP described in Parts A and B above. However, the amendment of the provisions of Part 0 - "Introduction" and Part I - "General Planning Aspects" needs special coordination, as specified in 7.4 below. Since these two Parts are harmonized for all regions, an amendment of the provisions contained there-in will lead to amendment of Parts 0 and I of Volume III of the regional plans of all regions.
7.2. Amendments of Volume III of the regional plan should be effected on the basis of an adequately documented proposal submitted to the ICAO Regional Office concerned by:

- a State (or a group of States); or
- the relevant Planning and Implementation Regional Group (PIRG) of the region(s); or
- the ICAO Secretariat; or
- international organisations directly concerned with the operation of aircraft, which may be invited to attend suitable ICAO meetings and/or which attended the meeting(s) where the relevant Volume III amendments were agreed.
7.3. This procedure does not preclude a State (or group of States) having previous consultation with other States before submitting an amendment proposal to the Regional Office. Such amendments may include additions, modifications or deletions to Volume III of the regional plan. In addition, the facts that led to the conclusion that the amendment should be included.
7.4. If the proposal concerns an amendment of the provisions in Part 0 - "Introduction" or Part I "General Planning Aspects", the ICAO Regional Office concerned will submit the proposal to ICAO Headquarters (Air Navigation Bureau) for coordination with all ICAO Regional Offices. The views of the ICAO Regional Offices will be taken into consideration in the consolidation/approval of the amendment by the ANB. The approved amendment will be published in Volume III of all regional plans at convenient intervals.
7.5. The mechanism for the amendment of Part II of Volume III of the regional plan should be developed, agreed by the relevant PIRG and reflected in the corresponding PIRG Handbook.

MID ANP, VOLUME I
 PART V - METEOROLOGY (MET)

1. INTRODUCTION

1.1 This part of the MID ANP constitutes the agreed regional requirements considered to be the minimum necessary for effective planning and implementation of aeronautical meteorology (MET) facilities and services in the MID Region and complements the provisions of the ICAO SARPs and PANS related to MET. It contains stable plan elements related to the assignment of responsibilities to States for the provision of MET facilities and services within the ICAO MID Region in accordance with Article 28 of the Convention on International Civil Aviation (Doc 7300) and mandatory requirements related to the MET facilities and services to be implemented by States in accordance with regional air navigation agreements.
1.2 The dynamic plan element related to the assignment of responsibilities to States for the provision of MET facilities and services and the mandatory requirements based on regional air navigation agreements related to MET are contained in the MID ANP Volume II, Part V - MET.
1.3

The MID ANP Volume III contains dynamic/flexible plan elements related to the implementation of air navigation systems and their modernization in line with the ICAO Aviation System Block Upgrades (ASBUs) methodology and associated technology roadmaps described in the Global Air Navigation Plan. The ASBU modules are aimed at increasing capacity and improving efficiency of the aviation system whilst maintaining or enhancing safety level, and achieving the necessary harmonization and interoperability at regional and global level. This includes the regionally agreed ASBU modules applicable to the specified ICAO region/sub-region and associated elements/enablers necessary for the monitoring of the status of implementation of these ASBU modules.

Standards and Recommended Practices and Procedures for Air Navigation Services

1.4 The SARPs and PANS and related guidance material applicable to the provision of MET are contained in:
a) Annex 3 - Meteorological Service for International Air Navigation;
b) Regional Supplementary Procedures (Doc 7030);
c) Handbook on the IAVW (Doc 9766);
d) Manual on Volcanic Ash, Radioactive Material and Toxic Chemical Clouds (Doc 9691); and
e) Manual of Aeronautical Meteorological Practice (Doc 8896).

2. GENERAL REGIONAL REQUIREMENTS

World area forecast system (WAFS) and meteorological offices
2.1 In the MID Region, WAFC London has been designated as the centre for the operation of the aeronautical fixed service satellite distribution system / WAFS Internet File Service (SADIS and/or WIFS) and the Internet-based Secure SADIS FTP service. The status of implementation of SADIS/WIFS by States in the MID Region is detailed in Volume III.
2.2 In the MID Region, WAFS products in digital form should be disseminated by WAFC London using the SADIS 2G satellite broadcast and the Secure SADIS FTP service and/or WIFS.

Volcanic Ash

$2.3 \quad$ Volcanic ash advisory centres (VAACs) Toulouse has been designated to prepare volcanic ash advisory information for the MID Region, as indicated below. The status of implementation of volcanic ash advisory information is detailed in Volume III.
2.4 Selected State volcano observatories have been designated for notification of significant preeruption volcanic activity, a volcanic eruption and/or volcanic ash in the atmosphere for the MID Region to their corresponding ACC/FIC, MWO and VAAC, as indicated at Table MET I-1. The status of implementation of volcano observatory notice for aviation (VONA) is detailed in Volume III.

Note - States volcano observatories and associated Table MET I-1 are not applicable for the MID Region.
Tropical Cyclone
2.5 Tropical cyclone advisory centre (TCAC) New Delhi has been designated to prepare tropical cyclone advisory information for the MID Region, as indicated below. The status of implementation of tropical cyclone advisory information is detailed in Volume III.

3. SPECIFIC REGIONAL REQUIREMENTS

None.

TABLE MET I-1 - STATE VOLCANO OBSERVATORIES

Not Applicable in the MID Region

- END -

APPENDIX B

MID AIR NAVIGATION PLAN

VOLUME II

MID AIR NAVIGATION PLAN

VOLUME II

TABLE OF CONTENTS

PART 0 - Introduction 0-1
PART I - General Planning Aspects (GEN) I-1Table GEN II-1 - Homogeneous areas and major traffic flows identified in theRegion
PART II — Aerodromes / Aerodrome Operations (AOP) II-1
Introduction II-1
General Regional Requirements II-1
Specific Regional Requirements II-3
Table AOP II-1 — Requirements and capacity assessment
PART III - Communications, Navigation and Surveillance (CNS) III-1
Introduction III-1
General Regional Requirements III-1
Specific Regional Requirements III-6
Table CNS II-1 - Aeronautical Fixed Telecommunications Network (AFTN) Plan
Table CNS II-2 - Required ATN Infrastructure Routing Plan
Table CNS II-3 - ATS Direct Speech Circuits Plan
Table CNS II-4 - HF Network Designators
PART IV — Air Traffic Management (ATM) IV-1
Introduction IV-1
General Regional Requirements IV-1
Specific Regional Requirements IV-2
Table ATM II-MID-1 — MID Region ATS Route Network
Table ATM II-MID-2 — MID SSR Code Allocation List
PART V — Meteorology (MET) V-1
Introduction V-1
General Regional Requirements V-1
Specific Regional Requirements V-2
Table MET II-1 — Meteorological Watch Offices
Table MET II-2 - Aerodrome Meteorological Offices
Table MET II-3 — VOLMET broadcast
Table MET II-MID-1 - Exchange of operational Meteorological Information during the Pilgrimage season
PART VI — Search and Rescue Services (SAR) VI-1
Introduction VI-1
General Regional Requirements VI-1
Specific Regional Requirements VI-1Table SAR II-1 - Rescue Coordination Centres (RCCs) and Rescue Sub-centres(RSCs) in the MID Region
Table SAR II-MID-1 - MID Region SAR Point of Contact (SPOC)-COSPAS- SARSAT
Chart SAR II-1 - Rescue Coordination Centres (RCCs) and Rescue Sub-Centres (RSCs) for the MID Region
PART VII — Aeronautical Information Management (AIM) VII-1
Introduction VII-1
General Regional Requirements VII-1
Specific Regional Requirements VII-2
Table AIM II-1 - Responsibility for the provision of AIS/AIM Facilities and Services in the MID Region
Table AIM II-2 - Production responsibility for sheets of the World Aeronautical Chart - ICAO 1: 1000000

MID ANP, VOLUME II

PART 0 - INTRODUCTION

1. GENERAL

1.1 The background to the publication of ANPs in three volumes is explained in the Introduction in Volume I. The procedure for amendment of Volume II is also described in Volume I.
1.2 Volume II contains dynamic plan elements related to:
a) the assignment of responsibilities to States for the provision of aerodrome and air navigation facilities and services; and
b) the mandatory requirements related to aerodrome and air navigation facilities and services to be implemented by States in accordance with regional air navigation agreements.
$1.3 \quad$ Volume II does not list all facilities in the region but only those required for international civil aviation operations in accordance with regional air navigation agreements. A regional air navigation agreement indicates a commitment on the part of the State(s) concerned to implement the requirement(s) specified. Documents from the Integrated Aeronautical Information Package and other publications should be consulted for information on additional facilities and for operational information in general. Detailed guidance material or concepts, complementary to the material in Volumes I, II and III are contained in documents that are referenced as MID Documents.

2. MANAGEMENT OF REGIONAL AIR NAVIGATION PLANS

2.1 The elements in Volume II are reviewed by the MIDANPIRG in accordance with its schedule of meetings, in consultation with provider and user States, and with the assistance of the ICAO MID Regional Office.
2.2 The information on States' facilities and services included in Volume II, should be updated following the process of regional air navigation agreements.
2.3 The development and maintenance of region-specific documents that provide detailed guidance material or concepts that are complementary to the material in Volumes I, II and III is the responsibility of the MIDANPIRG.

PART V - METEOROLOGY (MET)

1. INTRODUCTION

1.1 This part of the MID ANP, Volume II, complements the provisions in the ICAO SARPs and PANS related to aeronautical meteorology (MET). It contains dynamic plan elements related to the assignment of responsibilities to States for the provision of MET facilities and services within a specified area in accordance with Article 28 of the Convention on International Civil Aviation (Doc 7300); and mandatory requirements related to the MET facilities and services to be implemented by States in accordance with regional air navigation agreements. Such agreement indicates a commitment on the part of the States concerned to implement the requirements specified.

2. GENERAL REGIONAL REQUIREMENTS

Meteorological offices

2.1 In the MID Region, meteorological watch offices (MWO) have been designated to maintain continuous watch on meteorological conditions affecting flight operations within their area(s) of responsibility, as indicated at Table MET II-1.

Meteorological observations and reports

2.2

In the MID Region, routine observations, issued as a METAR, should be made throughout the 24 hours of each day at intervals of one hour or, for RS and AS designated aerodromes ${ }^{1}$, at intervals of one half-hour at aerodromes as indicated in Table MET II-2. For aerodromes included on the VHF VOLMET broadcast as indicated in Table MET II-3, routine observations, issued as METAR, should be made throughout the 24 hours of each day.
2.3 At aerodromes that are not operational throughout 24 hours, METAR should be issued at least 3 hours prior to the aerodrome resuming operations in the MID Region.

Forecasts

2.4 In the MID Region, an aerodrome forecast, issued as a TAF, should be for the aerodromes indicated in Table MET II-2.
2.5 In the MID Region, the period of validity of a routine TAF should be of 9-, 24-, or 30-hours to meet the requirements indicated in Table MET II-2.
2.6 In the MID Region, the forecast maximum and minimum temperatures expected to occur during the period of validity, together with their corresponding day and time of occurrence, should be included in TAF at aerodromes indicated in Table MET II-2.
2.7 In the MID Region, landing forecasts (prepared in the form of a trend forecast) should be provided at aerodromes indicated in Table MET II-2.

[^0]2.8 Operational meteorological information prepared as METAR, SPECI and TAF for aerodromes indicated in Table MET II-2, and SIGMET messages prepared for flight information regions or control areas indicated in Table MET II-1, should be disseminated to the international OPMET databanks designated for the MID Region (namely Jeddah and Bahrain (backup) Regional OPMET Centres) and to the centre designated for the operation of the aeronautical fixed service satellite distribution system (SADIS) and the Internet-based service (Secure SADIS FTP) and/or WIFS in the MID Region.
2.9 SIGMET messages should be disseminated to other meteorological offices in the MID Region.
2.10 Special air-reports that do not warrant the issuance of a SIGMET should be disseminated to other meteorological offices in the MID Region.
2.11 In the MID Region, meteorological information for use by aircraft in flight should be supplied through VOLMET broadcasts.
2.12 In the MID Region, the aerodromes for which METAR and SPECI are to be included in VOLMET broadcasts, the sequence in which they are to be transmitted and the broadcast time, is indicated in Table MET II-3.

3. SPECIFIC REGIONAL REQUIREMENTS

3.1 In the MID Region, operational meteorological information during the Pilgrimage Season should be issued as indicated in Table II-MID-1.

TABLE MET II-1 - METEOROLOGICAL WATCH OFFICES

EXPLANATION OF THE TABLE

Column

1 Name of the State where meteorological service is required
2 Name of the flight information region (FIR) or control area (CTA) where meteorological service is required
Note: The name is extracted from the ICAO Location Indicators (Doc 7910) updated quarterly. If a State wishes to change the name appearing in Doc 7910 and this table, ICAO should be notified officially.
3 ICAO location indicator of the FIR or CTA
4 Name of the meteorological watch office (MWO) responsible for the provision of meteorological service for the FIR or CTA
Note: The name is extracted from the ICAO Location Indicators (Doc 7910) updated quarterly. If a State wishes to change the name appearing in Doc 7910 and this table, ICAO should be notified officially.
5 ICAO location indicator of the responsible MWO
6 Requirement for SIGMET information (excluding for volcanic ash and for tropical cyclones) to be provided by the MWO for the FIR or CTA concerned, where:

Y - Yes, required
N - No, not required
7 Requirement for SIGMET information for volcanic ash to be provided by the MWO for the FIR or CTA concerned, where:

Y - Yes, required
N - No, not required
8 Requirement for SIGMET information for tropical cyclone to be provided by the MWO for the FIR or CTA concerned, where:

Y - Yes, required
N - No, not required
9 Requirement for AIRMET information to be provided by the MWO for the FIR or CTA concerned, where

Y - Yes, required
N - No, not required

State	FIR or CTA Where Meteorological Service is Required		Responsible Meteorological Watch Office		Meteorological Service To Be Provided			
	Name		Name		$\sum_{\infty}^{2} \stackrel{\infty}{\Omega}$	$\sum_{\substack{\infty}}^{\substack{0 \\ 3}}$		
1	2	3	4	5	6	7	8	9
BAHRAIN	BAHRAIN FIR	OBBB	BAHRAIN INTL	OBBI	Y	Y	Y	
EGYPT	CAIRO FIR	HECC	CAIRO INTL	HECA	Y	Y		Y
IRAN (ISLAMIC REPUBLIC OF)	TEHRAN FIR	OIIX	TEHRAN/ MEHRABAD INTL	OIII	Y	Y	Y	
IRAQ	BAGHDAD FIR	ORBB	BAGHDAD INTL	ORBI	Y	Y		
JORDAN	AMMAN FIR	OJAC	AMMAN/QUEEN ALIA	OJAI	Y	Y		
KUWAIT	KUWAIT FIR	OKAC	KUWAIT INTL	OKBK	Y	Y	Y	
LEBANON	BEIRUT FIR	OLBB	BEIRUT/BEIRUT INTL	OLBA	Y	Y		
LIBYA	TRIPOLI FIR	HLLL*	TRIPOLI/TRIPOLI INTL	HLLT	Y	Y		
OMAN	MUSCAT FIR	OOMM	MUSCAT/MUSCAT INTL	OOMS	Y	Y	Y	
SAUDI ARABIA	JEDDAH FIR	OEJD	JEDDAH/KING ABDULAZIZ INTL	OEJN	Y	Y	Y	
SUDAN	KHARTOUM FIR	HSSS	KHARTOUM	HSSS	Y	Y		
SYRAIN ARAB REPUBLIC	DAMASCUS FIR	OSDI	DAMASCUS INTL	OSDI	Y	Y		
UNITED ARAB EMIRATES	EMIRATES FIR	OMAE	ABU DHABI INTL	OMAA	Y	Y	Y	
YEMEN	SANAA' FIR	OYSN	SANAA' INTL	OYSN	Y	Y	Y	

TABLE MET II-2 - AERODROME METEOROLOGICAL OFFICES

EXPLANATION OF THE TABLE

Column

Name of the State where meteorological service is required
Name of the AOP aerodrome where meteorological service is required
Note: The name is extracted from the ICAO Location Indicators (Doc 7910) updated quarterly. If a State wishes to change the name appearing in Doc 7910 and this table, ICAO should be notified officially.
3 ICAO location indicator of the AOP aerodrome
4 Designation of AOP aerodrome:
RG - international general aviation, regular use
RS - international scheduled air transport, regular use RNS - international non-scheduled air transport, regular use AS - international scheduled air transport, alternate use ANS - international non-scheduled air transport, alternate use
5 Name of the aerodrome meteorological office responsible for the provision of meteorological service
Note: The name is extracted from the ICAO Location Indicators (Doc 7910) updated quarterly. If a State wishes to change the name appearing in Doc 7910 and this table, ICAO should be notified officially.
6 ICAO location indicator of the responsible aerodrome meteorological office

Requirement for METAR/SPECI from the aerodrome concerned, where:
Y - Yes, required
N - No, not required
Requirement for information on the state of the runway provided by the appropriate airport authority to be included as supplementary information in METAR/SPECI from the aerodrome concerned, where:

Y - Yes, required
N - No, not required
9 Requirement for trend forecast to be appended to METAR/SPECI from the aerodrome concerned, where

Y - Yes, required
N - No, not required
Requirement for TAF from the aerodrome concerned, where C - Requirement for 9-hour validity aerodrome forecasts in TAF code (9H)
T - Requirement for 18/24-hour validity aerodrome forecasts in TAF code (18/24H)
X - Requirement for 30-hour validity aerodrome forecasts in TAF code (30H)
N - No, not required
Requirement for maximum and minimum temperature (expected to occur during the period of validity of the TAF) to be included in TAF from the aerodrome concerned, where:

Y - Yes, required
N - No, not required
Availability of METAR/SPECI and TAF from the aerodrome concerned, where:
F - Full availability : OPMET information as listed issued for the aerodrome all through the 24-hour period
P - Partial availability: OPMET information as listed not issued for the aerodrome for the entire 24-hour period

State	AOP Aerodrome where meteorological service is to be provided			Responsible aerodrome meteorological office		Observations and forecasts to be provided					
	Name		$\underset{\sim}{~}$	Name		$\begin{aligned} & 3 \\ & \text { 적 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { \# } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		色		
1	2	3	4	5	6	7	8	9	10	11	12
BAHRAIN	BAHRAIN INTL	OBBI	RS	BAHRAIN INT'L	OBBI	Y	N	Y	X	N	F
EGYPT	ALEXANDRIA/B ORG EL-ARAB INTL	HEBA	RS	$\begin{aligned} & \text { CAIRO } \\ & \text { INTL } \end{aligned}$	HECA	Y		Y	X		F
	ASWAN INTL	HESN	RS	$\begin{aligned} & \text { CAIRO } \\ & \text { INTL } \end{aligned}$	HECA	Y		Y	X		F
	CAIRO INTL	HECA	RS	$\begin{aligned} & \text { CAIRO } \\ & \text { INTL } \end{aligned}$	HECA	Y		Y	X		F
	HURGHADA INTL	HEGN	RS	$\begin{aligned} & \text { CAIRO } \\ & \text { INTL } \end{aligned}$	HECA	Y		Y	X		F
	LUXOR INTL	HELX	RS	$\begin{aligned} & \text { CAIRO } \\ & \text { INTL } \end{aligned}$	HECA	Y		Y	X		F
	MARSA ALAM INTL	HEMA	RS	$\begin{aligned} & \text { CAIRO } \\ & \text { INTL } \end{aligned}$	HECA	Y		Y	X		F
	SHARM EL SHEIKH INTL	HESH	RS	$\begin{aligned} & \text { CAIRO } \\ & \text { INTL } \end{aligned}$	HECA	Y		Y	X		F
IRAN (ISLAMIC REPUBLIC OF)	$\begin{aligned} & \hline \text { BANDAR } \\ & \text { ABBASS INTL } \end{aligned}$	OIKB	RS	TEHRAN/ MEHRABAD INTL	OIII	Y			T		F
	ESFAHAN SHAHID BEHESHTI INTL	OIFM	RS	TEHRAN/ MEHRABAD INTL	OIII	Y			X		F
	MASHHAD/ SHAHID HASHEMI NEJAD INTL	OIMM	RS	TEHRAN/ MEHRABAD INTL	OIII	Y			T		F
	SHIRAZ/ SHAHID DASTGHAIB INTL	OISS	RS	SHIRAZ/ SHAHID DASTGHAIB INTL	OISS	Y		Y	X		F
	TABRIZ INTL	OITT	RNS	TABRIZ/ INTL	OITT	Y			X		F
	TEHRAN/ IMAM KHOMAINI INTL	OIIE	RS	TEHRAN/ MEHRABAD INTL	OIII	Y		Y	X		F
	TEHRAN/ MEHRABAD INTL	OIII	RS	TEHRAN/ MEHRABAD INTL	OIII	Y		Y	T		F
	$\begin{aligned} & \text { YAZD/SHAHID } \\ & \text { SADOOGHI } \\ & \text { INTL* } \end{aligned}$	OIYY	RS			Y					F
	ZAHEDAN INTL	OIZH	RS	TEHRAN/ MEHRABAD INTL	OIII	Y			T		F
IRAQ	AL NAJAF	ORNI	RNS			Y			T		F
	BAGHDAD INTL	ORBI	RS	BAGHDAD INTL	ORBI	Y		Y	T		F
ANP, Volume if		ORMM		BAGHDAD	ORBI	Y		Y	Jahua	2016	F

REPUBLIC	BASSEL ALASSAD INTL LATTAKIA DAMASCUS INTL	OSLK OSDI	RS RS	DAMASCUS INTL DAMASCUS INTL	OSDI OSDI	Y Y	Y	T X	F F
UNITED ARAB EMIRATES	ABU DHABI INTL	OMAA	RS	ABU DHABI INTL	OMAA	Y	Y	X	F
	AL AIN INTL	OMAL	RS	ABU DHABI INTL	OMAA	Y	Y	X	F
	ABU DHABI/ AL BATEEN EXECUTIVE	OMAD	RS	ABU DHABI INTL	OMAA	Y	Y	X	F
	DUBAI INTL	OMDB	RS	DUBAI INTL	OMDB	Y	Y	X	F
	DUBAI/ AL MAKTOUM INTL	OMDW	RS	$\begin{aligned} & \text { DUBAI } \\ & \text { INTL } \end{aligned}$	OMDB	Y	Y	X	F
	FUJAIRAH INTL	OMFJ	RS	DUBAI INTL	OMDB	Y		X	F
	RAS AL KHAIMAH INTL	OMRK	RS	$\begin{aligned} & \text { DUBAI } \\ & \text { INTL } \end{aligned}$	OMDB	Y		X	F
	SHARJAH INTL	OMSJ	RS	DUBAI INTL	OMDB	Y		X	F
YEMEN	ADEN INTL	OYAA	RS	SANAA/ INTL	OYSN	Y	Y	X	F
	HODEIDAH INTL	OYHD	RS	SANAA/ INTL	OYSN	Y		T	F
	MUKALLA INTL	OYRN	RS	SANAA/ INTL	OYSN	Y		T	F
	SANAA INTL	OYSN	RS	SANAA/ INTL	OYSN	Y		T	F
	TAIZ INTL	OYTZ	RS	SANAA/ INTL	OYSN	Y		T	F

TABLE MET II-3 - VOLMET BROADCASTS

EXPLANATION OF THE TABLE

The transmitting station appears at the top of each block.
Names in lower case letters indicate aerodromes for which reports (routine or selected special) are required. Names in upper-case letters indicate aerodromes for which forecasts are required.

Istanbul 25B30 55B60	Shiraz 20B25 50B55	Tehran 15B20 45B50
Istanbul	Tehran	Tehran
Ankara	Shiraz	Shiraz
Athinai	Isfahan	Mashhad
Thessaloniki	Kuwait	Karachi
Roma	Bandar Abbass	Ashgabat
Tehran	Bahrain	Baku
	Muscat	Yerevan
ISTANBUL	Dubai	Tashkent
SHIRAZ	TEHRAN	

TABLE MET II-MID-1 - EXCHANGE OF OPERATIONAL METEOROLOGICAL INFORMATION DURING THE PILGRIMAGE SEASON

EXPLANATION OF THE TABLE

Column

1 Name of the State in which the operational meteorological information should be available.
2 Location from which, or related to which, the operational meteorological information refers.
3 TF - Aerodrome forecasts X: Seasonal requirement
4 RF - Route forecasts

To be available in	From or related to	Information required	
		TF	RF
1	2	3	4
LIBYA	DHAHRAN MADINAH RIYADH ALGER (Route CASABLANCA- TRIPOLI) CAIRO (Route TRIPOLI-JEDDAH)	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X X
SAUDI ARABIA	ABIDJAN ACCRA AKTYUBINSK ALGER (Route CASABLANCA- TRIPOLI) ALMATY ASKHABAT BAMAKO BANGUI BRAZZAVILLE CAIRO (Route TRIPOLI-JEDDAH) CONAKRY COTONOU DAKAR DOUALA DUSHANBE KHARTOUM (Route KHARTOUM- GENEINA) KYIV NOUADHIBOU OUAGADOUGOU SAL ISLAND SAMARKAND TASHKENT	X X	X
SUDAN	BAMAKO CONAKRY DAKAR NOUADHIBOU OUAGADOUGOU SAL ISLAND JEDDAH (Route JEDDAH- KHARTOUM)	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X

- END -

APPENDIX C

MID AIR NAVIGATION PLAN

VOLUME III

MID AIR NAVIGATION PLAN

VOLUME III

TABLE OF CONTENTS

PART 0 - Introduction 0-1
PART I — General Planning Aspects (GEN) I-1Table GEN III-1 - Implementation Indicator(s) for each ASBU Block 0 ModuleAppendix A - Sample Template for Air Navigation Report Form (ANRF)Appendix B - Main Planning Table Template
PART II — Air Navigation System Implementation II-1Appendix - ASBU Block 0 Modules applicable in the MID Region

MID ANP, VOLUME III
 PART 0 - INTRODUCTION

1. INTRODUCTION

1.1 The background to the publication of ANPs in three volumes is explained in the Introduction in Volume I. The procedure for amendment of Volume III is also described in Volume I. Volume III contains dynamic/flexible plan elements related to the implementation of the air navigation system and its modernization in line with the ICAO Aviation System Block Upgrades (ASBUs) and associated technology roadmaps described in the Global Air Navigation Plan (GANP).
1.2 The information contained in Volume III is related mainly to:

- Planning: objectives set, priorities and targets planned at regional or sub-regional levels;
- Implementation monitoring and reporting: monitoring of the progress of implementation towards targets planned. This information should be used as the basis for reporting purposes (i.e.: global and regional air navigation reports and performance dashboards); and/or
- Guidance: providing regional guidance material for the implementation of specific system/procedures in a harmonized manner.
1.3 The management of Volume III is the responsibility of the MIDANPIRG.
1.4 Volume III should be used as a tool for monitoring and reporting the status of implementation of the elements planned here above, through the use of tables/databases and/or references to online monitoring tools, as endorsed by MIDANPIRG. The status of implementation is updated on a regular basis as endorsed by MIDANPIRG.

2. AVIATION SYSTEM BLOCK UPGRADES (ASBUs), MODULES AND ROADMAPS

2.1. The ASBU Modules and Roadmaps form a key component to the GANP, noting that they will continue to evolve as more work is done on refining and updating their content and in subsequent development of related provisions, support material and training.
2.2. Although the GANP has a worldwide perspective, it is not intended that all Block Upgrade Modules are required to be applied in every State, sub-region and/or region. Many of the Block Upgrade Modules contained in the GANP are specialized packages that should be applied only where the specific operational requirement exists or corresponding benefits can be realistically projected. Accordingly, the Block Upgrade methodology establishes an important flexibility in the implementation of its various Modules depending on a region, sub-region and/or State's specific operational requirements. Guided by the GANP, ICAO MID regional, sub-regional and State planning should identify Modules which best provide the needed operational improvements.

MID ANP, VOLUME III
 PART I - GENERAL PLANNING ASPECTS (GEN)

1. PLANNING METHODOLOGY

1.1 Guided by the GANP, the regional planning process starts by identifying the homogeneous ATM areas, major traffic flows and international aerodromes. An analysis of this data leads to the identification of opportunities for performance improvement. Modules from the Aviation System Block Upgrades (ASBUs) are evaluated to identify which of those modules best provide the needed operational improvements. Depending on the complexity of the module, additional planning steps may need to be undertaken including financing and training needs. Finally, regional plans would be developed for the deployment of modules by drawing on supporting technology requirements. This is an iterative planning process which may require repeating several steps until a final plan with specific regional targets is in place. This planning methodology requires full involvement of States, service providers, airspace users and other stakeholders, thus ensuring commitment by all for implementation.
1.2 Block 0 features Modules characterized by technologies and capabilities which have already been developed and implemented in many parts of the world today. It therefore features a near-term availability milestone, or Initial Operating Capability (IOC), of 2013 for high density based on regional, subregional and State operational need. Blocks 1 through 3 are characterized by both existing and projected performance area solutions, with availability milestones beginning in 2018, 2023 and 2028 respectively.

2. REVIEW AND EVALUATION OF AIR NAVIGATION PLANNING

2.1. The progress and effectiveness against the priorities set out in the regional air navigation plans should be annually reported, using a consistent reporting format, to ICAO.
2.2. Performance monitoring requires a measurement strategy. Data collection, processing, storage and reporting activities supporting the identified global/regional performance metrics are fundamental to the success of performance-based approaches.
2.3.

The air navigation planning and implementation performance framework prescribes reporting, monitoring, analysis and review activities being conducted on a cyclical, annual basis. An Air Navigation Reporting Form (ANRF) reflecting selected key performance areas as defined in the Manual on Global Performance of the Air Navigation System (ICAO Doc 9883) has been developed for each ASBU Module. The ANRF is a customized tool which is recommended for the application of setting planning targets, monitoring implementation, and identifying challenges, measuring implementation/performance and reporting. If necessary, other reporting formats that provide more details may be used but should contain as a minimum the elements described in the ANRF template. A sample of the ANRF is provided in Appendix A. A sample Template of a planning table which may be used to show the elements planned in an ICAO region is provided in Appendix B.

3. REPORTING AND MONITORING RESULTS

3.1 Reporting and monitoring results will be analyzed by the PIRGs, States and ICAO Secretariat to steer the air navigation improvements, take corrective actions and review the allocated objectives, priorities and targets if needed. The results will also be used by ICAO and aviation partner stakeholders to develop the annual Global Air Navigation Report. The report results will provide an opportunity for the international civil aviation community to compare progress across different ICAO regions in the establishment of air navigation infrastructure and performance-based procedures.
3.2

The reports will also provide the ICAO Council with detailed annual results on the basis of which tactical adjustments will be made to the performance framework work programme, as well as triennial policy adjustments to the GANP and the Block Upgrade Modules.
3.3 Table GEN III- $\mathbf{1}$ contains a minimum set of Implementation Indicator(s) for each of the eighteen ASBU Block 0 Modules necessary for the monitoring of these Modules (if identified as a priority for implementation at regional or sub-regional level). These indicators are intended to enable comparison between ICAO Regions with respect to ASBU Block 0 Modules and will apply only to commonly selected ASBU Modules. All regions/PIRGs reserve the right to select the ASBU Modules relevant to their needs and to endorse additional indicators, as deemed necessary. No reporting is required for ASBU Block 0 Modules that have not been selected.

Note: The priority for implementation as well as the applicability area of each selected ASBU Block 0 Module is to be defined by the MIDANPIRG.

TABLE GEN III-1 - IMPLEMENTATION INDICATOR(S) FOR EACH ASBU BLOCK 0 MODULE

Explanation of the Table

$1 \quad$ Block 0 Module Code
2 Block 0 Module Title
3 Implementation Indicator
4 Remarks

Module Code	Module Title	Implementation Indicator	Remarks
1	2	3	4
$\begin{gathered} \text { B0- } \\ \text { APTA } \end{gathered}$	Optimization of Approach Procedures including guidance \quadvertical	\% of international aerodromes having at least one runway end provided with APV Baro-VNAV or LPV procedures	
$\begin{gathered} \text { B0- } \\ \text { WAKE } \end{gathered}$	Increased Runway Throughput through Optimized Wake Turbulence Separation	\% of applicable international aerodromes having implemented increased runway throughput through optimized wake turbulence separation	1. Not to be considered for the first reporting cycles due to lack of maturity. 2. List of ADs to be established through regional air navigation agreement.
$\begin{gathered} \text { B0- } \\ \text { RSEQ } \end{gathered}$	Improve Traffic flow through Runway Sequencing (AMAN/DMAN)	\% of applicable international aerodromes having implemented AMAN / DMAN	1. Not to be considered for the first reporting cycles due to lack of maturity. 2. List of ADs to be established through regional air navigation agreement.
$\begin{aligned} & \text { B0- } \\ & \text { SURF } \end{aligned}$	Safety and Efficiency of Surface Operations (ASMGCS Level 1-2)	\% of applicable international aerodromes having implemented ASMGCS Level 2	List of established regional air agreement. to be through navigation
$\begin{gathered} \text { B0- } \\ \text { ACDM } \end{gathered}$	Improved Airport Operations through Airport-CDM	\% of applicable international aerodromes having implemented improved airport operations through airport-CDM	List of ADs established to be through regional air agreement. navigation
B0-FICE	Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration	\% of FIRs within which all applicable ACCs have implemented at least one interface to use AIDC / OLDI with neighbouring ACCs	
$\begin{aligned} & \text { B0- } \\ & \text { DATM } \end{aligned}$	Service Improvement through Digital Aeronautical Information Management	- \% of States having implemented an AIXM based AIS database - \% of States having implemented QMS	
B0- AMET	Meteorological information supporting enhanced operational efficiency and safety	- \% of States having implemented SADIS / WIFS - \% of States having implemented QMS	

Module Code	Module Title	Implementation Indicator	Remarks
1	2	3	4
$\begin{gathered} \text { B0- } \\ \text { FRTO } \end{gathered}$	Improved Operations through Enhanced EnRoute Trajectories	\% of FIRs in which FUA is implemented	
$\begin{gathered} \text { B0- } \\ \text { NOPS } \end{gathered}$	Improved Flow Performance through Planning based on a Network-Wide view	\% of FIRs within which all ACCs utilize ATFM systems	
$\begin{gathered} \text { B0- } \\ \text { ASUR } \end{gathered}$	Initial capability for ground surveillance	\% of FIRs where ADS-B OUT and/or MLAT are implemented for the provision of surveillance services in identified areas.	Not to be considered for the first reporting cycles due to lack of maturity.
$\begin{gathered} \text { B0- } \\ \text { ASEP } \end{gathered}$	Air Traffic Situational Awareness (ATSA)	\% of States having implemented air traffic situational awareness	Not to be considered for the first reporting cycles due to lack of maturity.
B0OPFL	Improved access to optimum flight levels through climb/descent procedures using ADSB	\% of FIRs having implemented in-trail procedures	Not to be considered for the first reporting cycles due to lack of maturity.
$\begin{array}{r} \text { B0- } \\ \text { ACAS } \end{array}$	ACAS Improvements	\% of States requiring carriage of ACAS (with TCAS 7.1 evolution)	
$\begin{gathered} \text { B0- } \\ \text { SNET } \end{gathered}$	Increased Effectiveness of Ground-Based Safety Nets	\% of States having implemented ground-based safety-nets (STCA, APW, MSAW, etc.)	
B0-CDO	Improved Flexibility and Efficiency in Descent Profiles (CDO)	- \% of international aerodromes / TMAs with PBN STAR implemented - \% of international aerodromes/TMA where CDO is implemented	
B0-TBO	Improved Safety and Efficiency through the initial application of Data Link En-Route	\% of FIRs utilising data link en-route in applicable airspace	
B0-CCO	Improved Flexibility and Efficiency Departure Profiles Continuous Climb Operations (CCO)	- \% of international aerodromes / TMAs with PBN SID implemented - \% of international aerodromes/TMA where CCO is implemented	

Appendix A

SAMPLE TEMPLATE

1. AIR NAVIGATION REPORT FORM (ANRF)

(This template demonstrates how ANRF to be used.
The data inserted here refers to ASBU B0-05/CDO as an example only)
Regional and National planning for ASBU Modules

Elements	Performance Indicators/Supporting Metrics
1. CDO	Indicator: Percentage of international aerodromes/TMAs with CDO implemented Supporting metric: Number of international aerodromes/TMAs with CDO implemented
2. PBN STARs	Indicator: Percentage of international aerodromes/TMAs with PBN STARs implemented Supporting metric: Number of international aerodromes/TMAs with PBN STARs implemented

K. Performance Monitoring and Measurement 8 B. ASBU B0-05/CDO: Performance Monitoring	
(Out of eleven KPAs, for the present until experienced gained, only five have been selected for reporting through ANRF)	Where applicable, indicate qualitative Benefits,
Access \& Equity	Not applicable
Capacity	Not applicable
Efficiency	Cost savings through reduced fuel burn. Reduction in the number of required radio transmissions.
Environment	Reduced emissions as a result of reduced fuel burn
Safety	More consistent flight paths and stabilized approach paths. Reduction in the incidence of controlled flight into terrain (CFIT).
9. Identification of performance metrics: It is not necessary that every module contributes to all of the five KPAs. Consequently, a limited number of metrics per type of KPA, serving as an example to measure the module(s)' implementation benefits, without trying to apportion these benefits between module, have been identified on page 5. For the family of ASBU modules selected for air navigation implementation, States/Region to choose the applicable performance (benefit) metrics from the list available on page 5. This approach would facilitate States in collecting data for the chosen performance metrics. States/Region, however, could add new metrics for different KPAs based on maturity of the system and ability to collect relevant data.	

AIR NAVIGATION REPORT FORM HOW TO USE - EXPLANATORY NOTES

1. Air Navigation Report Form (ANRF): This form is nothing but the revised version of Performance Framework Form that was being used by Planning and Implementation Regional Groups (PIRGs)/States until now. The ANRF is a customized tool for Aviation System Block Upgrades (ASBU) Modules which is recommended for application for setting planning targets, monitoring implementation, identifying challenges, measuring implementation/performance and reporting. Also, the PIRGs and States could use this report format for any other air navigation improvement programmes such as Search and Rescue. If necessary, other reporting formats that provide more details may be used but should contain as a minimum the elements described in this ANRF template. The results will be analysed by ICAO and aviation partners and utilized in the Regional Performance Dashboards and the Annual Air Navigation Report. The conclusions from the Air Navigation Report will serve as the basis for future policy adjustments, aiding safety practicality, affordability and global harmonization, amongst other concerns.
2. Regional/National Performance objective: In the ASBU methodology, the performance objective will be the title of the ASBU module itself. Furthermore, indicate alongside corresponding Performance Improvement area (PIA).
3. Impact on Main Key Performance Areas: Key to the achievement of a globally interoperable ATM system is a clear statement of the expectations/benefits to the ATM community. The expectations/benefits are referred to eleven Key Performance Areas (KPAs) and are interrelated and cannot be considered in isolation since all are necessary for the achievement of the objectives established for the system as a whole. It should be noted that while safety is the highest priority, the eleven KPAs shown below are in alphabetical order as they would appear in English. They are access/equity; capacity; cost effectiveness; efficiency; environment; flexibility; global interoperability; participation of ATM community; predictability; safety; and security. However, out of these eleven KPAs, for the present, only five have been selected for reporting through ANRF, which are Access \& Equity, Capacity, Efficiency, Environment and Safety. The KPAs applicable to respective ASBU module are to be identified by marking Y (Yes) or N (No). The impact assessment could be extended to more than five KPAs mentioned above if maturity of the national system allows and the process is available within the State to collect the data.
4. Planning Targets and Implementation Progress: This section indicates planning targets and status of progress in the implementation of different elements of the ASBU Module for both air and ground segments.
5. Elements related to ASBU module: Under this section list elements that are needed to implement the respective ASBU Module. Furthermore, should there be elements that are not reflected in the ASBU Module (example: In ASBU B0-80/ACDM, Aerodrome certification and data link applications DVOLMET, D-ATIS, D-FIS are not included; Similarly in ASBU B0-30/DAIM, note that WGS-84 and eTOD are not included) but at the same time if they are closely linked to the module, ANRF should specify those elements. As a part of guidance to PIRGs/States, every Regional ANP will have the complete list of all 18 Modules of ASBU Block 0 along with corresponding elements, equipage required on the ground and in the air as well as metrics specific to both implementation and performance (benefits).
6. Targets and implementation progress (Ground and Air): Planned implementation date (month/year) and the current status/responsibility for each element are to be reported in this section. Please provide as much details as possible and should cover both avionics and ground systems. This ANRF being high level document, develop necessary detailed action plan separately for each element/equipage.
7. Implementation challenges: Any challenges/problems that are foreseen for the implementation of elements of the Module are to be reported in this section. The purpose of the section is to identify in advance any issues that will delay the implementation and if so, corrective action is to be initiated by the concerned person/entity. The four areas, under which implementation issues, if any, for the ASBU Module to be identified, are as follows:

- Ground System Implementation:
- Avionics Implementation:
- Procedures Availability:
- Operational Approvals:

Should be there no challenges to be resolved for the implementation of ASBU Module, indicate as "NIL".
8. Performance Monitoring and Measurement: Performance monitoring and measurement is done through the collection of data for the supporting metrics. In other words, metrics are quantitative measure of system performance - how well the system is functioning. The metrics fulfil three functions. They form a basis for assessing and monitoring the provision of ATM services, they define what ATM services user value and they can provide common criteria for cost benefit analysis for air navigation systems development. The Metrics are of two types:
A. Implementation Monitoring: Under this section, the indicator supported by the data collected for the metric reflects the status of implementation of elements of the Module. For examplePercentage of international aerodromes with CDO implemented. This indicator requires data for the metric "number of international aerodromes with CDO".
B. Performance Monitoring: The metric in this section allows to asses benefits accrued as a result of implementation of the module. The benefits or expectations, also known as Key Performance Areas (KPAs), are interrelated and cannot be considered in isolation since all are necessary for the achievement of the objectives established for the system as a whole. It should be noted that while safety is the highest priority, the eleven KPAs shown below are in alphabetical order as they would appear in English. They are access/equity; capacity; cost effectiveness; efficiency; environment; flexibility; global interoperability; participation of ATM community; predictability; safety; and security. However, out of these eleven KPAs, for the present until experienced gained, only five have been selected for reporting through ANRF, which are Access \& Equity, Capacity, Efficiency, Environment and Safety. Where applicable, mention qualitative benefits under this section.
9. Identification of performance metrics: It is not necessary that every module contributes to all of the five KPAs. Consequently, a limited number of metrics per type of KPA, serving as an example to measure the module(s)' implementation benefits, without trying to apportion these benefits between module, have been identified on page 6 . For the family of ASBU modules selected for air navigation implementation, States/Region to choose the applicable performance (benefit) metrics from the list available on page 6. This approach would facilitate States in collecting data for the chosen performance metrics. States/Region, however, could add new metrics for different KPAs based on maturity of the system and ability to collect relevant data.

Appendix B - Main Planning Table Template

MID ANP, VOLUME III
 PART II - AIR NAVIGATION SYSTEM IMPLEMENTATION

1. INTRODUCTION

1.1 The planning and implementation of the ICAO Aviation System Block Upgrades (ASBUs) should be undertaken within the framework of the MIDANPIRG with the participation and support of all stakeholders, including regulatory personnel.
1.2 The ASBU Blocks and Modules adopted by the MID Region should be followed in accordance with the specific ASBU requirements to ensure global interoperability and harmonization of air traffic management. The MIDANPIRG should determine the ASBU Block Upgrade Modules, which best provide the needed operational improvements in the ICAO MID Region.

2. ICAO MID REGION AIR NAVIGATION OBJECTIVES, PRIORITIES AND TARGETS

2.1 In accordance with Recommendation 6/1 of the Twelfth Air Navigation Conference (ANConf/12), PIRGs are requested to establish priorities and targets for air navigation, in line with the ASBU methodology.
2.2 The achievement of the intended benefits along each routing or within each area of affinity is entirely dependent on the coordinated implementation of the required elements by all provider and user stakeholders concerned.
2.3 Considering that some of the block upgrade modules contained in the GANP are specialized packages that may be applied where specific operational requirements or corresponding benefits exist, States and PIRGs should clarify how each Block Upgrade module would fit into the national and regional plans.
2.4 As Block 0 modules in many cases provide the foundation for future development, all Block 0 modules should be assessed, as appropriate, for early implementation by States in accordance with their operational needs.
2.5 In establishing and updating the MID air navigation plan, the MIDANPIRG and States should give due consideration to the safety priorities set out in the Global Aviation Safety Plan (GASP) and MID Region safety strategy.
2.6 States in the MID Region through the MIDANPIRG should establish their own air navigation objectives, priorities and targets to meet their individual needs and circumstances in line with the global and regional air navigation objectives, priorities and targets.

3. MONITORING OF ASBU MODULES IMPLEMENTATION

3.1 The monitoring of air navigation performance and its enhancement should be carried out through identification of relevant air navigation Metrics and Indicators as well as the adoption and attainment of air navigation system Targets.
3.2 The monitoring of the regional implementation progress and performance metrics/indicators should be done for all elements planned by MIDANPIRG. The monitoring should allow global correlation of status and expectations, appreciation of benefits achieved for the airspace users, as well as corrective actions to be taken by the PIRG on implementation plans.
3.3 The MIDANPIRG should determine appropriate mechanisms and tools for the monitoring and the collection of necessary data at national and regional levels.

MID Region ASBU Block 0 Modules Prioritization and Monitoring

3.4 On the basis of operational requirements and taking into consideration the associated benefits, MID Region has prioritized the implementation of the Block " 0 " Modules, also agreed on the subsidiary bodies that will be monitoring and supporting the implementation of the modules as in Table below:

MID REGION ASBU BLOCK 0 MODULES PRIORITIZATION AND MONITORING

Module Code	Module Title	Priorit y	Monitoring		Remarks
			Main	Supporting	
Performance Improvement Areas (PIA) 1: Airport Operations					
B0-APTA	Optimization of Approach including guidance Procedures vertical	1	PBN SG	$\begin{aligned} & \text { ATM SG, } \\ & \text { AIM SG, } \\ & \text { CNS SG } \end{aligned}$	
B0-WAKE	Increased Runway Throughput through Optimized Wake Turbulence Separation	2			
B0-RSEQ	Improve Traffic flow through Runway Sequencing (AMAN/DMAN)	2			
B0-SURF	Safety and Efficiency of Surface Operations (ASMGCS Level 1-2)	1	ANSIG	CNS SG	Coordination with RGS WG
B0-ACDM	Improved Airport Operations Airport-CDM	1	ANSIG	 CNS SG, AIM SG, ATM SG	Coordination with RGS WG
Performance Improvement Areas (PIA) 2 Globally Interoperable Systems and Data Through Globally Interoperable System Wide Information Management					
B0-FICE	Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration	1	CNS SG	ATM SG	
B0-DATM	Service Improvement through Digital Aeronautical Information Management	1	AIM SG	-	
B0-AMET	Meteorological information supporting enhanced operational efficiency and safety	1	MET SG	-	
Performance Improvement Areas (PIA) 3 Optimum Capacity and Flexible Flights - Through GlobalCollaborative ATM					
B0-FRTO	Improved Operations through Enhanced EnRoute Trajectories	1	ATM SG		

B0-NOPS	Improved Performance through Planning based on a Network-Wide view	1	ATM SG	AIM SG, CNS SG							
B0-ASUR	Initial capability for ground surveillance	2									
B0-ASEP	Air Traffic Situational Awareness (ATSA)	2									
B0-OPFL	Improved access to optimum flight levels through climb/descent procedures using ADS-B	2									
B0-ACAS	ACAS Improvements							1	CNS SG		
B0-SNET	Increased Effectiveness of Ground-Based Safety Nets	2									
Performance											
Operations	Improvement Areas (PIA) 4 Efficient Flight Path - Through Trajectory-based										
B0-CDO	Improved Flexibility and Efficiency in Descent Profiles (CDO)	1	PBN SG								
B0-TBO	Improved Safety and Efficiency through the initial application of Data Link En-Route	2									
B0-CCO	Improved Flexibility and Efficiency Departure Profiles Continuous Climb Operations (CCO)	1	PBN SG								

Note:
Priority 1: Modules that have the highest contribution to the improvement of air navigation safety and/or efficiency in the MID Region. These modules should be implemented where applicable and will be used for the purpose of regional air navigation monitoring and reporting for the period 2013-2014.

Priority 2: Modules recommended for implementation based on identified operational needs and benefits.

Description and purpose

The use of performance-based navigation (PBN) and ground-based augmentation system (GBAS) landing system (GLS) procedures will enhance the reliability and predictability of approaches to runways, thus increasing safety, accessibility and efficiency. This is possible through the application of Basic global navigation satellite system (GNSS), Baro vertical navigation (VNAV), satellite-based augmentation system (SBAS) and GLS. The flexibility inherent in PBN approach design can be exploited to increase runway capacity.

Main performance impact:

KPA- 01 - Access and Equity	KPA-02 Capacity	KPA-04 Efficiency	KPA-05 Environment	-KPA-10 Safety
Y	Y	Y	Y	Y

Applicability consideration:

This module is applicable to all instrument, and precision instrument runway ends, and to a limited extent, non-instrument runway ends.

B0 - APTA: Optimization of Approach Procedures including vertical guidance			
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets
States’ PBN Implementation Plans	All	Indicator: \% of States that provided updated PBN implementation Plan Supporting metric: Number of States that provided updated PBN implementation Plan	80 \% by Dec. 2014 100\% by Dec. 2015
LNAV	All RWYs Ends at International Aerodromes	Indicator: \% of runway ends at international aerodromes with RNAV(GNSS) Approach Procedures (LNAV) Supporting metric: Number of runway ends at international aerodromes with RNAV (GNSS) Approach Procedures (LNAV)	All runway ends at Int'l Aerodromes, either as the primary approach or as a back-up for precision approaches by Dec. 2016
LNAV/VNAV	All RWYs ENDs at International Aerodromes	Indicator: \% of runways ends at international aerodromes provided with Baro-VNAV approach procedures (LNAV/VNAV) Supporting metric: Number of runways ends at international aerodromes provided with Baro-VNAV approach procedures (LNAV/VNAV)	All runway ends at Int'l Aerodromes, either as the primary approach or as a back-up for precision approaches by Dec. 2017

Description and purpose

To implement continuous climb operations in conjunction with performance-based navigation (PBN) to provide opportunities to optimize throughput, improve flexibility, enable fuel-efficient climb profiles and increase capacity at congested terminal areas.

Main performance impact:

KPA- 01 - Access and Equity	KPA-02 Capacity	KPA-04 Efficiency	KPA-05 Environment	KPA-10 Safety	
N/A	N/A	Y	Y	Y	

Applicability consideration:

Regions, States or individual locations most in need of these improvements. For simplicity and implementation success, complexity can be divided into three tiers:
a) least complex: regional/States/locations with some foundational PBN operational experience that could capitalize on near-term enhancements, which include integrating procedures and optimizing performance;
b) more complex: regional/States/locations that may or may not possess PBN experience, but would benefit from introducing new or enhanced procedures. However, many of these locations may have environmental and operational challenges that will add to the complexities of procedure development and implementation; and
c) most complex: regional/States/locations in this tier will be the most challenging and complex to introduce integrated and optimized PBN operations. Traffic volume and airspace constraints are added complexities that must be confronted. Operational changes to these areas can have a profound effect on the entire State, region or location.

B0 - CCO: Improved Flexibility and Efficiency Departure Profiles - Continuous Climb Operations (CCO)			
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets
PBN SIDs	in accordance with States’ implementation Plans	Indicator: \% of International Aerodromes/TMA with PBN SID implemented as required. Supporting Metric: Number of International Aerodromes/ TMAs with PBN SID implemented as required.	100\% by Dec. 2016 for the identified Aerodromes/TMAs 100\% by Dec. 2018 for all the International Aerodromes/TMAs
International aerodromes/TMAs with CCO	in accordance with States' implementation Plans	Indicator: \% of International Aerodromes/TMA with CCO implemented as required. Supporting Metric: Number of International Aerodromes/TMAs with CCO implemented as required.	100\% by Dec. 2018 for ther identified Aerodromes/TMAs

Description and purpose

To use performance-based airspace and arrival procedures allowing aircraft to fly their optimum profile using continuous descent operations (CDOs). This will optimize throughput, allow fuel efficient descent profiles and increase capacity in terminal areas.

Main performance impact:

KPA- 01 - Access and Equity	KPA-02 Capacity	-	KPA-04 Efficiency		KPA-05 Environment		KPA-10 Safety	
N	Y		Y		Y		Y	

Applicability consideration:

Regions, States or individual locations most in need of these improvements. For simplicity and implementation success, complexity can be divided into three tiers:
a) least complex - regional/States/locations with some foundational PBN operational experience that could capitalize on near term enhancements, which include integrating procedures and optimizing performance;
b) more complex - regional/States/locations that may or may not possess PBN experience, but would benefit from introducing new or enhanced procedures. However, many of these locations may have environmental and operational challenges that will add to the complexities of procedure development and implementation; and
c) most complex - regional/States/locations in this tier will be the most challenging and complex to introduce integrated and optimized PBN operations. Traffic volume and airspace constraints are added complexities that must be confronted. Operational changes to these areas can have a profound effect on the entire State, region or location.

B0 - CDO: Improved Flexibility and Efficiency in Descent Profiles (CDO)			
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets
PBN STARs	In accordance with States’ implementation Plans	Indicator: $\quad \%$Aerodromes/TMAofimplemented as required. InternationalPBN imAR Supporting Metric: Number of International Aerodromes/TMAs with PBN STAR implemented as required.	100\% by Dec. 2016 for the identified Aerodromes/TMAs 100\% by Dec. 2018 for all the International Aerodromes/TMAs
International aerodromes/TMAs with CDO	In accordance with States’ implementation Plans	Indicator: $\%$ ofInternational Aerodromes/TMA implemented as required. with CDO Supporting Metric: Number of International Aerodromes/TMAs with CDO implemented as required. l	100\% by Dec. 2018 for the identified Aerodromes/TMAs

TABLE B0-APTA, CCO and CDO

EXPLANATION OF THE TABLE

Column

1 Name of the State / International aerodromes’ Location Indicator
2 Runway Designator
3, 4, 5 Conventional Approaches (ILS / VOR or NDB)
6, 7, 8 APTA (Status of PBN Plan and implementation of LNAV, LNAV/VNAV), where:

> Y - Yes, implemented

N - No, not implemented
9, 10 CCO (Status of implementation of RNAV SID, CCO), where:
Y - Yes, implemented

$$
\mathrm{N} \text { - No, not implemented }
$$

11, 12 CDO (Status of implementation of RNAV STAR, CDO), where:
Y - Yes, implemented
N - No, not implemented
Remarks

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	PBN PLAN	LNAV	$\begin{gathered} \text { LNAV } \\ \text { ! } \\ \text { VNAV } \end{gathered}$	RNAV SID	CCO	RNAV STAR	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
BAHRAIN												
OBBI	12L	ILS	I	VORDME		Y						SIDs and STARs withdrawn
	30R	ILS	I	VORDME		Y						SIDs and STARs withdrawn
Total	2	2		2	Y	2	0	0	0	0	0	
\%		100		100		100	0	0	0	0	0	

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	PBN PLAN	LNAV	$\begin{gathered} \text { LNAV } \\ \text { / } \\ \text { VNAV } \end{gathered}$	$\begin{aligned} & \text { RNAV } \\ & \text { SID } \end{aligned}$	CCO	RNAV STAR	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
EGYPT												
HEBA	14											
	32	ILS	I			Y		Y				
HESN	17			VORDME		Y		Y		Y		
	35	ILS	I	VORDME		Y		Y		Y		
HECA	05L	ILS	I	VORDME		Y						
	05C	ILS	II	VORDME		Y						
	05R	ILS	I									
	23L	ILS	I	VORDME								
	23C	ILS	II	VORDME		Y						
	23R	ILS	I	VORDME		Y						
HEGN	16			VORDME		Y		Y		Y		
	34	ILS	I	VORDME		Y		Y		Y		
HELX	2	ILS	I	VORDME		Y		Y		Y		
	20	ILS	I	VORDME		Y		Y		Y		
HEMA	15			VORDME								
	33			VORDME								
HESH	04L	ILS	I	VORDME		Y		Y		Y		
	04R			VORDME		Y		Y		Y		
	22L			VORDME		Y		Y		Y		
	22R			VORDME		Y		Y		Y		
Total	20	12		17	Y	15	2	11	0	10	0	
\%		60		85	Jan.	75	10	55	0	50	0	

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	$\begin{aligned} & \text { PBN } \\ & \text { PLAN } \end{aligned}$	LNAV	LNAV VNAV	$\begin{gathered} \text { RNAV } \\ \text { SID } \end{gathered}$	CCO	RNAV STAR	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
					2015							
I.R. IRAN												
OIKB	03L											
	03R			VORDME / NDB								
	21L	ILS	I	VORDME / NDB								
	21R											
OIFM	08L			VORDME / NDB								
	08R			VORDME / NDB								
	26L			$\begin{gathered} \hline \text { VORDME / } \\ \text { NDB } \\ \hline \end{gathered}$								
	26R	ILS	I	VORDME / NDB								
OIMM	13L			VORDME								
	13R			VORDME								
	31L			$\begin{aligned} & \hline \text { VORDME / } \\ & \text { NDB } \end{aligned}$								
	31R	ILS	I	VORDME / NDB								
OISS	11L											
	11R											
	29L	ILS	I	VORDME / NDB								
	29R			$\begin{gathered} \text { VORDME / } \\ \text { NDB } \\ \hline \end{gathered}$								
OITT	12L											

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	PBN PLAN	LNAV	$\begin{aligned} & \text { LNAV } \\ & \text { ! } \\ & \text { VNAV } \end{aligned}$	$\begin{aligned} & \text { RNAV } \\ & \text { SID } \end{aligned}$	CCO	RNAV STAR	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
	12R											
	30L	ILS	I	VORDME								
	30R	ILS	I	VORDME								
OIIE	11L	ILS	I	VORDME / NDB								
	11R			VORDME / NDB								
	29L			VORDME								
	29R	ILS	II	VORDME / NDB								
OIII	11L			VORDME								
	11R			VORDME								
	29L	ILS	1	VORDME								
	29R											
OIYY	13			VORDME								
	31			VORDME								
OIZH	17											
	35	ILS	I	VORDME								
Total	32	10		24	N	1	1	0	0	0	0	32
\%		31		75		3	3	0	0	0	0	
IRAQ												
ORBI	15L	ILS	I	VORDME								
	15R					Y						
	33L					Y						
	33R	ILS	1	VORDME								

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	PBN PLAN	LNAV	$\begin{gathered} \text { LNAV } \\ \text { / } \\ \text { VNAV } \end{gathered}$	RNAV SID	CCO	RNAV STAR	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
ORMM	14			VORDME								
	32	ILS	I	VORDME								
ORER	18	ILS	II			Y				Y		
	36	ILS	I			Y				Y		
ORSU	13	ILS	I	VOR								
	31	ILS	I	VOR								
ORNI	10											
	28	ILS		VOR								
ORBM												NO DATA
Total	12	8		7	N	4	0	0	0	2	0	
\%		67		58		33	0	0	0	17	0	
JORDAN												
OJAM	6					Y	Y	Y		Y		
	24	ILS	I	VORDME / NDB		Y	Y	Y		Y		
OJAI	08L	ILS	I	NDB DME		Y	Y	Y		Y		
	08R			NDB DME		Y	Y	Y		Y		
	26L	ILS	II	VOR / NDB		Y	Y	Y		Y		
	26R	ILS	I	VORDME / NDB		Y	Y	Y		Y		
OJAQ	1	ILS	I	VORDME		Y	Y	Y		Y		
	19	N/A	N/A			Y	N/A	Y		Y		LNAV/VNAV not feasible
Total	8	6		6	Y	8	8	8	0	8	0	
\%		75		75		100	100	100	0	100	0	

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	$\begin{aligned} & \text { PBN } \\ & \text { PLAN } \end{aligned}$	LNAV	$\begin{gathered} \text { LNAV } \\ \text { / } \\ \text { VNAV } \end{gathered}$	RNAV SID	CCO	RNAV STAR	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
KUWAIT												
OKBK	15L	ILS	II			Y	Y	Y		Y		
	15R	ILS	II	VORDME		Y	Y	Y		Y		
	33L	ILS	II	VORDME		Y	Y	Y		Y		
	33R	ILS	II			Y	Y	Y		Y		
Total	4	4		2	Y	4	4	4	0	4	0	
\%		100		50		100	100	100	0	100	0	
LEBANON												
OLBA	3	ILS	1	VORDME		Y				Y		
	16	ILS	I	VORDME		Y				Y		
	17	ILS	I	VORDME / NDB		Y				Y		
	21					Y				Y		
	34	N/A		N/A		N/A				N/A		Not used for landing
	35	N/A		N/A		N/A				N/A		Not used for landing
Total	6	5		5	N	6	0	0	0	6	0	
\%		83		83		100	0	0	0	100	0	
LIBYA												
HLLB	15R			VORDME								VOR not flight checked
	15L			VORDME								VOR not flight checked
	33R			VORDME								VOR not flight checked
	33L	ILS	I	VORDME								ILS not flight checked

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	$\begin{gathered} \text { PBN } \\ \text { PLAN } \end{gathered}$	LNAV	$\begin{gathered} \text { LNAV } \\ \text { / } \\ \text { VNAV } \end{gathered}$	$\begin{aligned} & \text { RNAV } \\ & \text { SID } \end{aligned}$	CCO	$\begin{aligned} & \text { RNAV } \\ & \text { STAR } \end{aligned}$	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
HLLS	13	ILS	I	VORDME								ILS not flight checked
	31			VORDME								VOR not flight checked
HLLT	9			VORDME								VOR not flight checked
	27	ILS	I	VORDME								ILS not flight checked
Total	8	3		8	N	0	0	0	0	0	0	
\%		38		100		0	0	0	0	0	0	
OMAN												
OOMS	08R	ILS	I	VORDME								
	26L	ILS	I	VORDME								
OOSA	7			VORDME								
	25	ILS	I	VORDME								
Total	4	3		4	Y	0	0	0	0	0	0	
\%		75		100		0	0	0	0	0	0	
QATAR												
OTBD	15	ILS	I	VORDME		Y	N/A	Y		Y		LNAV/VNAV not feasible
	33	ILS	II/III	$\begin{gathered} \hline \text { VORDME/N } \\ \text { DB } \end{gathered}$		Y	Y	Y		Y		
OTHH	16L	ILS	I/II/III	VORDME		Y	Y	Y		Y		
	16R	ILS	I/II/III	VORDME		Y	Y	Y		Y		
	34L	ILS	I/II/III	VORDME		Y	Y	Y		Y		
	34R	ILS	I/II/III	VORDME		Y	Y	Y		Y		
Total	6	6		6	Y	6	6	6	0	6	0	
\%		100		100		100	100	100	0	100	0	

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	$\begin{aligned} & \text { PBN } \\ & \text { PLAN } \end{aligned}$	LNAV	$\begin{aligned} & \text { LNAV } \\ & \text { / } \\ & \text { VNAV } \end{aligned}$	RNAV SID	CCO	RNAV STAR	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
SAUDI ARABIA												
OEDF	16L	ILS	II	VORDME								
	16R	ILS	II	VORDME								
	34L	ILS	II	VORDME								
	34R	ILS	II	VORDME								
OEJN	16L	ILS	I	VORDME		Y				Y		
	16C	ILS	II			Y				Y		
	16R	ILS	II			Y				Y		
	34L	ILS	II			Y				Y		
	34C	ILS	II	VORDME		Y				Y		
	34R	ILS	I	VORDME		Y				Y		
OEMA	17	ILS	I	VORDME		Y		Y		Y		
	18			VORDME		Y		Y		Y		
	35	ILS	I	VORDME		Y		Y		Y		
	36	ILS	I	VORDME		Y		Y		Y		
OERK	15L	ILS	I	VORDME								
	15R	ILS	I									
	33L	ILS	I									
	33R	ILS	I	VORDME								
Total	18	17		13	Y	10	0	4	0	10	0	
\%		94		72		56	0	22	0	56	0	
SUDAN												
HSNN	4					Y	Y					

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	PBN PLAN	LNAV	LNAV VNAV	RNAV SID	CCO	$\begin{aligned} & \text { RNAV } \\ & \text { STAR } \end{aligned}$	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
	22					Y	Y					
HSOB	1					Y	Y					
	19					Y	Y					
HSSS	18	ILS	I	VORDME		Y	Y					
	36	ILS	I	VORDME		Y	Y					
HSPN	17			$\begin{gathered} \hline \text { VORDME / } \\ \text { NDB } \\ \hline \end{gathered}$		Y	Y					
	35	ILS	I	VORDME / NDB		Y	Y					
Total	6	3		4	Y	6	6	0	0	0	0	
\%		50		67	$\begin{aligned} & \hline \text { Apr. } \\ & 2014 \end{aligned}$	100	100	0	0	0	0	
SYRIA												
OSAP	9			VORDME								
	27	ILS	II	$\begin{gathered} \hline \text { VORDME / } \\ \text { NDB } \\ \hline \end{gathered}$								
OSLK	17	ILS	I	$\begin{gathered} \text { VORDME / } \\ \text { NDB } \\ \hline \end{gathered}$								
	35											
OSDI	05L			VOR								
	05R	ILS	II	$\begin{gathered} \hline \text { VORDME / } \\ \text { NDB } \\ \hline \end{gathered}$								
	23L			VORDME / NDB DME								
	23R	ILS	II	VORDME		Y	Y					
Total	8	4		7	Y	1	1	0	0	0	0	

State/Aerodrome Location Indicator	RWY	Conventional Approaches			APTA			CCO		CDO		Remarks
		Precision		VOR or NDB	$\begin{aligned} & \text { PBN } \\ & \text { PLAN } \end{aligned}$	LNAV	$\begin{gathered} \text { LNAV } \\ \text { / } \\ \text { VNAV } \end{gathered}$	RNAV SID	CCO	RNAV STAR	CDO	
		ILS	CAT		Update date							
1	2	3	4	5	6	7	8	9	10	11	12	13
\%		50		88		13	13	0	0	0	0	
UNITED ARABEMIRATES												
OMAA	13L	ILS	II					Y		Y		
	13R	ILS	I	VOR				Y		Y		
	31L	ILS	II/III	VOR				Y		Y		
	31R	ILS	II					Y		Y		
OMAD	13			VORDME		Y				Y		
	31	ILS	I	VORDME		Y				Y		
OMAL	1	ILS	I	VOR								
	19			VOR								
OMDB	12L	ILS	I/II/III	VOR		Y	Y	Y		Y		
	12R	ILS	I/II/III	VOR		Y	Y	Y		Y		
	30L	ILS	I/II/III			Y	Y	Y		Y		
	30R	ILS	I/II/III	VOR		Y	Y	Y		Y		
OMDW	12	ILS	II/III			Y	Y	Y		Y		
	30	ILS	II/III			Y	Y	Y		Y		
OMFJ	11							Y				
	29	ILS	I	VOR				Y				
OMRK	16			VOR								
	34	ILS	I	VOR								
OMSJ	12	ILS	I			Y	Y	Y		Y		
	30	ILS	II			Y	Y	Y		Y		

Description and purpose

Basic A-SMGCS provides surveillance and alerting of movements of both aircraft and vehicles on the aerodrome thus improving runway/aerodrome safety. ADS-B information is used when available (ADS-B APT).

Main performance impact:

KPA- 01 - Access and Equity	KPA-02 Capacity	KPA-04 Efficiency	KPA-05 Environment	-KPA-10 Safety
Y	Y	Y	Y	Y

Applicability consideration:

A-SMGCS is applicable to any aerodrome and all classes of aircraft/vehicles. Implementation is to be based on requirements stemming from individual aerodrome operational and cost-benefit assessments. ADS-B APT, when applied is an element of A-SMGCS, is designed to be applied at aerodromes with medium traffic complexity, having up to two active runways at a time and the runway width of minimum 45 m .

BO-SURF: Safety and Efficiency of Surface Operations (A-SMGCS Level 1-2)

Elements	Applicability	Performance Indicators/Supporting Metrics	Targets
A-SMGCS Level 1*	OBBI, HECA, OIII, OKBK, OOMS, OTBD, OTHH, OEDF, OEJN, OERK, OMDB, OMAA, OMDW	Indicator: \% of applicable international aerodromes having implemented A-SMGCS Level 1 Supporting Metric: Number of applicable international aerodromes having implemented ASMGCS Level 1	$\begin{array}{lll} \hline 70 \% & \text { by } & \text { Dec. } \\ 2017 \end{array} \text { }$
A-SMGCS Level 2*	OBBI, HECA, OIII, OKBK, OOMS, OTBD, OTHH, OEJN, OERK, OMDB, OMAA, OMDW	Indicator: \% of applicable international aerodromes having implemented A-SMGCS Level 2 Supporting Metric: Number of applicable international aerodromes having implemented ASMGCS Level 2	$\begin{array}{lll} \hline 50 \% & \text { by } & \text { Dec. } \\ 2017 \end{array} \text {. }$

*Reference: Eurocontrol Document - "Definition of A-SMGCS Implementation Levels, Edition 1.2, 2010".

TABLE B0-SURF (A-SMGCS Level 1-2)

EXPLANATION OF THE TABLE

Column
1 Name of the State
2 Name of City/Aerodrome and Location Indicator
3 Status of implementation of A-SMGCS Level 1, where:
Y - Yes, implemented
N - No, not implemented
4 Status of implementation of A-SMGCS Level 2, where:
Y - Yes, implemented
N - No, not implemented
5 Action plan - short description of the State's Action Plan with regard to the implementation of A-SMGCS Level 1-2, especially for items with " N ".
6 Remarks

State	City/ Aerodrome Location Indicator	Level 1	Level 2	Action Plan	Remarks
1	2	3	4	5	6
BAHRAIN	Bahrain/Bahrain Intl (OBBI)	N	N	A-SMGCS Level 1-2 Project is under Execution phase. expected completion on Dec 2015	
EGYPT	Cairo/Cairo Intl (HECA)	Y	Y		
IRAN	Tehran/Mehrabad Intl (OIII)	N	N		
KUWAIT	Kuwait/Kuwait Intl (OKBK)	N	N		
OMAN	Muscat/Muscat Intl (OOMS)	N	N		
QATAR	Doha/Doha Intl (OTBD)	Y	Y		
	Doha/Hamad Intl (OTHH)	Y	Y		
$\begin{aligned} & \hline \text { SAUDI } \\ & \text { ARABIA } \end{aligned}$	Dammam/King Fahad Intl (OEDF)	N	N		
	JEDDAH/King Abdulaziz Intl (OEJN)	N	N		
	RIYADH/King Khalid Intl (OERK)	N	N		
UAE	Abu Dhabi/Abu Dhabi Intl (OMAA)	Y	Y	Level 42017	
	Dubai/Dubai Intl (OMDB)	Y	Y	Level 42016	
	DUBAI/Al Maktoum Intl (OMDW)	Y	N	Level 42018	
Total Percentage		46\%	46\%		

B0 - ACDM: Improved Airport Operations through Airport-CDM

Description and purpose

To implement collaborative applications that will allow the sharing of surface operations data among the different stakeholders on the airport. This will improve surface traffic management reducing delays on movement and manoeuvring areas and enhance safety, efficiency and situational awareness.

Main performance impact:

KPA- 01 - Access and Equity	KPA-02 - Capacity	KPA-04 - Efficiency	KPA-05 - Environment	KPA-10 - Safety
N	Y	Y	Y	N

Applicability consideration:

Local for equipped/capable fleets and already established airport surface infrastructure.

B0 - ACDM: Improved Airport Operations through Airport-CDM						
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets			
A-CDM	OBBI, HECA, OIII, OKBK, OOMS, OTBD, OTHH, OEJN, OERK, OMDB, OMDW, OMAA,	Indicator: \% of applicable international aerodromes having implemented improved airport operations through airport-CDM	40% by Dec. 2017			
Supporting metric: Number of applicable						
international aerodromes having implemented						
improved airport operations through airport-						
CDM						

TABLE B0-ACDM

EXPLANATION OF THE TABLE

Column
1 Name of the State
2 Name of City/Aerodrome and Location Indicator
3 Status of implementation of Apron Management, where:
Y - Yes, implemented
N - No, not implemented
4 Status of implementation of ATM-Aerodrome coordination, where:
Y - Yes, implemented
N - No, not implemented
5 Terminal \& runway capacity is declared, where:
Y - Yes, declared
N - No, not declared
6 Action plan - short description of the State's Action Plan with regard to the implementation of B0-ACDM.

7 Remarks

State	City/ Aerodrome Location Indicator	$\begin{aligned} & \text { Apron } \\ & \text { Management } \end{aligned}$	ATMAerodrome Coordination	Terminal \&runway capacity declared	Action Plan	Remarks
1	2	3	4	5	6	7
BAHRAIN	Bahrain/Bahrain Intl (OBBI)	N	N	N	2018	
EGYPT	Cairo/Cairo Intl (HECA)	N	N	N		
IRAN	Tehran/Mehrabad Intl (OIII)	N	N	N		
KUWAIT	Kuwait/Kuwait Intl (OKBK)	N	N	N		
OMAN	Muscat/Muscat Intl (OOMS)	N	N	N		
QATAR	Doha/Doha Intl (OTBD)	N	N	N		
	Doha/Hamad Intl (OTHH)	N	N	N		
SAUDI ARABIA	Jeddah/King Abdulaziz Intl (OEJN)	N	N	N		
	Riyadh/King Khalid Intl (OERK)	N	N	N		
UAE	Abu Dhabi/Abu Dhabi Intl (OMAA)	N	N	N	2017	
	Dubai/Dubai Intl (OMDB)	N	N	N	2016	
	Dubai/Al Maktoum Intl (OMDW)	N	N	N	2017	
Total Percentage		0	0	0		

Description and purpose

To improve coordination between air traffic service units (ATSUs) by using ATS Interfacility Data Communication (AIDC) defined by the ICAO Manual of Air Traffic Services Data Link Applications (Doc 9694). The transfer of communication in a data link environment improves the efficiency of this process particularly for oceanic ATSUs.

Main performance impact:

KPA- 01 - Access and Equity	KPA-02 - Capacity	KPA-04 - Efficiency	KPA-05 - Environment	KPA-10 - Safety
N	Y	Y	N	Y

Applicability consideration:

Applicable to at least two area control centres (ACCs) dealing with enroute and/or terminal control area (TMA) airspace. A greater number of consecutive participating ACCs will increase the benefits.

| B0 - FICE: Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration | | | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Elements | Applicability | Performance Indicators/Supporting Metrics | Targets |
| AMHS capability | All States | Indicator: \% of States with AMHS capability
 Supporting metric: Number of States with
 AMHS capability | 70% of States with
 AMHS capability by
 Dec. 2017 |
| AMHS
 implementation
 /interconnection | All States | Indicator: \% of States with AMHS
 implemented (interconnected with other
 States AMHS)
 Supporting metric: Number of States with | AMHS interconnected
 by Dec. 2017 |
| Implementation
 of AIDC/OLDI
 between adjacent
 ACCs | All ACCs | AMHS implemented (interconnections with
 other States AMHS) | |

TABLE B0-FICE

EXPLANATION OF THE TABLE

Column

1 Name of the State
2, 3, 4 Status of AMHS Capability and Interconnection and AIDC/OLDI Capability, where:
Y - Fully Implemented
N - Not Implemented
5 Status of AIDC/OLDI Implementation, where:
Y - If AIDC/OLDI is implemented at least with one neighbouring ACC
N - Not Implemented
6 Action plan - short description of the State's Action Plan with regard to the implementation of B0-FICE.
7 Remarks

State	AMHS Capability	AMHS Interconnection	AIDC/OLDI Capability	AIDC/OLDI Implementation	Action Plan	Remarks
$\mathbf{1}$	$\mathbf{3}$	N	Y	N	Sep 2015 for AMHS Int.	
Bahrain	Y	N	Y	Y		$\mathbf{7}$
Egypt	Y	Y	Y	N		Contract signed for AMHS
Iran	N	N	N	N		
Iraq	N	N	Y	N		
Jordan	Y	Y	Y	N	Dec 2015 for AMHS Int.	
Kuwait	Y	N	Y	Y		
Lebanon	Y	N	Y	Y		
Libya	Y	N	Y	N		
Oman	Y	Y	Y	N		local implementation for OLDI
Qatar	Y	Y	Y	Y		local implementation for AIDC
Saudi Arabia	Y	Y	Y	Y		AMHS Int. Feb 2015
Sudan	Y	Y	Y	N		
Syria	N	N	N	N		Y
UAE	Y	Y	Y	Y	Q2-2016	Local implementation for OLDI
Yemen	N	N	N	N	Dec 2015 for	Contract signed for AMHS
Total Percentage	$\mathbf{7 3 \%}$	$\mathbf{4 7 \%}$	$\mathbf{8 0 \%}$	$\mathbf{3 3 \%}$		

Description and purpose

The initial introduction of digital processing and management of information, through aeronautical information service (AIS)/aeronautical information management (AIM) implementation, use of aeronautical information exchange model (AIXM), migration to electronic aeronautical information publication (AIP) and better quality and availability of data

Main performance impact:

KPA- 01 - Access and Equity	KPA-02 - Capacity	KPA-04 - Efficiency	KPA-05 - Environment	KPA-10 - Safety
N	N	Y	Y	Y

Applicability consideration:

Applicable at State level, with increased benefits as more States participate

B0 - DATM: Service Improvement through Digital Aeronautical Information Management			
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets
1- National AIM Implementation Plan/Roadmap	All States	Indicator: \% of States that have National AIM Implementation Plan/Roadmap Supporting Metric: Number of States that have National AIM Implementation Plan/Roadmap	80\% by Dec. 2016 90\% by Dec. 2018
2-AIXM	All States	Indicator: \% of States that have implemented an AIXM-based AIS database Supporting Metric: Number of States that have implemented an AIXM-based AIS database	60\% by Dec. 2015 80\% by Dec. 2017 100\% by Dec. 2019
3-eAIP	All States	Indicator: \% of States that have implemented an IAID driven AIP Production (eAIP) Supporting Metric: Number of States that have implemented an IAID driven AIP Production (eAIP)	60\% by Dec. 2016 80\% by Dec. 2018 100\% by Dec. 2020
4-QMS	All States	Indicator: \% of States that have implemented QMS for AIS/AIM Supporting Metric: Number of States that have implemented QMS for AIS/AIM	70\% by Dec. 2016 90\% by Dec. 2018
5-WGS-84	All States	Indicator: \% of States that have implemented WGS-84 for horizontal plan (ENR, Terminal, AD) Supporting Metric: Number of States that have implemented WGS-84 for horizontal plan (ENR, Terminal, AD) Indicator: \% of States that have implemented WGS-84 Geoid Undulation	Horizontal: 100\% by Dec. 2017 Vertical: 90\% by Dec. 2018

		Supporting Metric: Number of States that have implemented WGS-84 Geoid Undulation	
6-eTOD	All States	Indicator: \% of States that have implemented required Terrain datasets Supporting Metric: Number of States that have implemented required Terrain datasets Indicator: \% of States that have implemented required Obstacle datasets Supporting Metric: Number of States that have implemented required Obstacle datasets	Area 1 : Terrain: 50\% by Dec. 2015, 70\% by Dec. 2018 Obstacles: 40\% by Dec. 2015, 60\% by Dec. 2018 Area 4: Terrain: 50\% by Dec. 2015, 100\% by Dec. 2018 Obstacles: 50\% by Dec. 2015, 100\% by Dec. 2018
7-Digital NOTAM*	All States	Indicator: \% of States that have included the implementation of Digital NOTAM into their National Plan for the transition from AIS to AIM Supporting Metric: Number of States that have included the implementation of Digital NOTAM into their National Plan for the transition from AIS to AIM	80\% by Dec. 2016 90\% by Dec. 2018

In order to assist States in the planning for the transition from AIS to AIM in an expeditious manner, the following Tables, which provide more details than the standard ANRF, should be used:

1- Table B0-DATM 3-1 sets out the requirements for the Provision of AIS/AIM products and services based on the Integrated Aeronautical Information Database (IAID). It reflects the transition from the current product centric AIS to data centric AIM. For the future digital environment it is important that the authoritative databases are clearly designated and such designation must be published for the users. This is achieved with the concept of the Integrated Aeronautical Information Database (IAID), a single access point for one or more authoritative databases (AIS, Terrain, Obstacles, AMDB, etc) for which the State is responsible. This Table will be used for the monitoring of the Key Performance Indicators (KPIs) related to elements Nr. 2 and 3 of the Module B0-DATM.
2- Table B0-DATM 3-2 sets out the requirements for aeronautical data quality. It will be used for the monitoring of the Key Performance Indicators (KPIs) related to the element Nr. 4 of the Module B0DATM.

3- Table B0-DATM 3-3 sets out the requirements for the implementation of the World Geodetic System - 1984 (WGS-84).The requirement to use a common geodetic system remains essential to facilitate the exchange of data between different systems. The expression of all coordinates in the AIP and charts using WGS-84 is an important first step for the transition to AIM. This Table will be used for the monitoring of the Key Performance Indicators (KPIs) related to the element Nr. 5 of the Module B0-DATM.

4- Table B0-DATM 3-4-1 sets out the requirements for the provision of Terrain and Obstacle data sets for Area 1 and Area 4. It will be used for the monitoring of the Key Performance Indicators (KPIs) related to the element Nr. 6 of the Module B0-DATM.
5- Table B0-DATM 3-4-2 sets out the requirements for the provision of Terrain and Obstacle data sets for Area 2. It will be used for the monitoring of the Key Performance Indicators (KPIs) related to the element Nr. 6 of the Module B0-DATM.

6- Table B0-DATM 3-4-3 sets out the requirements for the provision of Terrain and Obstacle data sets for Area 3 and implementation of Airport Mapping Databases (AMDB). It will be used for the monitoring of the Key Performance Indicators (KPIs) related to the element Nr. 6 of the Module B0DATM.

Table B0-DATM 3-1

Provision of AIS/AIM products and services based on the Integrated Aeronautical Information Database (IAID)

EXPLANATION OF THE TABLE

Column:
1 Name of the State or territory for which the provision of AIS/AIM products and services based on the IAID is required.
2 Requirement for the implementation and designation of the authoritative IAID, shown by:
FI - Fully Implemented
PI - Partially Implemented
NI - Not Implemented
Note 1 - The IAID of a State is a single access point for one or more databases (AIS, Terrain, Obstacles, AMDB, etc). The minimum set of databases which should be integrated is defined in Annex 15.
Note 2 - Information providing detail of "PI" should be given in the Remarks column (the implemented components of the IAID).
Note 3 - The information related to the designation of the authoritative IAID should be published in the AIP (GEN 3.1)
3 Requirement for an IAID driven AIP production (eAIP), shown by:
FI - Fully Implemented (eAIP: Text, Tables and Charts)
PI - Partially Implemented
NI - Not Implemented
Note 4 - AIP production includes, production of AIP, AIP Amendments and AIP Supplements
4 Requirement for an IAID driven NOTAM production, shown by:
FC - Fully Compliant
NC - Not Compliant
5 Requirement for an IAID driven SNOWTAM production, shown by:
FC - Fully Compliant
NC - Not compliant
6 Requirement for an IAID driven PIB production, shown by:
FC - Fully compliant
NC - Not compliant
7 Requirement for Charting systems to be interoperable with the IAID, shown by:
FC - Fully compliant
PC - Partially compliant
NC - Not compliant
8 Requirement for Procedure design systems to be interoperable with the IAID, shown by:
FI - Fully Implemented
PI - Partially Implemented
NI - Not Implemented

Note 5 - full implementation includes the use of the IAID for the design of the procedures and for the storage of the encoded procedures in the IAID
9 Requirement for ATS systems to be interoperable with the IAID, shown by:
FI - Fully Implemented
PI - Partially Implemented
NI - Not Implemented
10 Action Plan - short description of the State's Action Plan with regard to the provision of AIM products and services based on the IAID, especially for items with a "PC", "PI", "NC" or "NI" status, including planned date(s) of full compliance, as appropriate.
11 Remarks - additional information, including detail of "PC", "NC", "PI" and "NI", as appropriate.

TABLE B0-DATM-3-1

Provision of AIS/AIM products and services based on the Integrated Aeronautical Information Database (IAID)

State	IAID	eAIP	NOTAM	SNOWTAM	PIB	Charting	Procedure Design	ATS	Action Plan	Remarks
1	2	3	4	5	6	7	8	9	10	11
BAHARAIN	PI	FI	FC	FC	FC	FC	PI	FI	National AIM Roadmap-2015	AIXM: 4.5 (5.1 by Dec. 2015)
EGYPT	FI	PI	NC	NC	FC	NC	NI	PI	National AIM Roadmap-2015	AIXM: 5.1 3 by 2015, 4-9 by 2016
IRAN, ISLAMIC REPUBLIC OF	NI	NI	NC	NC	NC	NC	NI	NI	National AIM Roadmap-2015	AIXM: NI
IRAQ	NI	NI	NC	NC	NC	NC	NI	NI	National AIM Roadmap-2014	AIXM: NI
JORDAN	PI	NI	FC	FC	FC	PC	NI	NI	National AIM Roadmap-2014	AIXM: Database via EAD
KUWAIT	PI	NI	FC	NC	PC	NC	NI	NI	National AIM Roadmap-2015	AIXM: NI (5.1 by Dec. 2015)
LEBANON	NI	NI	NC	NC	NC	NC	NI	NI	National AIM Roadmap-2014	AIXM: 4.5
LIBYA	NI	NI	NC	NC	NC	NC	NI	NI	No Action Plan	AIXM: NI
OMAN	NI	NI	NC	NC	NC	NC	NI	NI	National AIM Roadmap-2014	AIXM: NI (5.1 in progress)
QATAR	PI	PI	FC	PC	FC	PC	PI	NI	National AIM Roadmap-2015	AIXM: 5.1
$\begin{array}{\|l} \hline \text { SAUDI } \\ \text { ARABIA } \\ \hline \end{array}$	FI	FI	FC	FC	FC	FC	FI	FI	National AIM Roadmap-2014	AIXM: 4.5
SUDAN	PI	NI	FC	NC	FC	PC	PI	PI	National AIM Roadmap-2015	AIXM: NI (planned; Mar 2016) 1.AIS DB integrated with MET \& ATM 2. Contract Signed for eAIP, AIXM connected with Charting SYS. 7. Contract signed. 8. Ongoing project
SYRIAN ARAB REPUBLIC	NI	NI	NC	NC	NC	NC	NI	NI	No Action Plan	AIXM:NI
UNITED ARAB EMIRATES	PI	FI	NC	NC	PC	PC	NI	PI	National AIM Roadmap-2014	AIXM: 5.1 AMDB: 2016-2021 eTOD integration: 2016 PIB: AVBL at OMMA, OMDB, OMDW; other ADs 2020

| | | | | | | | | | Charing: 2016
 Procedure Design 2020
 ATS: ACC AVBL, ADs 2020
 Digital NOTAM 2016-2021 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEMEN | NI | NI | | | | | | | |
| AIXM:NI | | | | | | | | | |

Table B0-DATM-3-2
 Aeronautical Data Quality

EXPLANATION OF THE TABLE

Column:

1 Name of the State or territory.
2 Compliance with the requirement for implementation of QMS for Aeronautical Information Services including safety and security objectives, shown by:

FC - Fully compliant
NC - Not compliant
3 Compliance with the requirement for the establishment of formal arrangements with approved data originators concerning aeronautical data quality, shown by:

FC - Fully compliant
PC - Partially compliant
NC - Not compliant
4 Implementation of digital data exchange with originators, shown by:
FI - Implemented
PI - Partially Implemented
NI - Not implemented
Note 1 - Information providing detail of "PI" and "NI" should be given in the Remarks column (percentage of implementation).
5 Compliance with the requirement for metadata, shown by:
FC - Fully compliant
PC - Partially compliant
NC - Not compliant
6 Compliance with the requirements related to aeronautical data quality monitoring (accuracy, resolution, timeliness, completeness), shown by:

FC - Fully compliant
PC - Partially compliant
NC - Not compliant
7 Compliance with the requirements related to aeronautical data integrity monitoring, shown by:

FC - Fully compliant
PC - Partially compliant
NC - Not compliant
8 Compliance with the requirements related to the AIRAC adherence, shown by:

> FC - Fully compliant
> NC - Not compliant

9 Action Plan - short description of the State's Action Plan with regard to aeronautical data quality requirements implementation, especially for items with a "PC", "PI", "NC" or "NI" status, including planned date(s) of full compliance, as appropriate.
10 Remarks - additional information, including detail of "PC", "NC", "PI" and "NI", as appropriate.

TABLE B0-DATM-3-2
Aeronautical Data Quality

Qtate	QMS	Establishment of formal agreements	Digital data exchange with originators	Metadata	Data quality monitoring	Data integrity monitoring	AIRAC adherence	Action Plan
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	Remarks
BAHARAIN	FC	FC	PI	PC	PC	PC	FC	National AIM Roadmap-2015
EGYPT	FC	PC	PI	FC	PC	PC	FC	National AIM Roadmap-2015
3, 4, 6 and 7 by 2016								
IRAN, ISLAMIC REPUBLIC OF	FC	PC	NI	NC	NC	NC	FC	National AIM Roadmap-2015
IRAQ	NC	NC	NI	NC	NC	NC	FC	National AIM Roadmap-2014
JORDAN	FC	NC	NI	PC	FC	FC	FC	National AIM Roadmap-2014
KUWAIT	FC	PC	NI	NC	NC	NC	FC	National AIM Roadmap-2015
LEBANON	NC	NC	NI	NC	NC	NC	FC	National AIM Roadmap-2014
LIBYA	NC	NC	NI	NC	NC	NC	NC	No Action Plan
OMAN	NC	NC	NI	NC	NC	NC	FC	National AIM Roadmap-2014
QATAR	FC	PC	PI	FC	PC	PC	FC	National AIM Roadmap-2015
- SLA 65\% by Dec 2016.								

Table B0-DATM-3-3

World Geodetic System-1984 (WGS-84)

EXPLANATION OF THE TABLE

Column:

1 Name of the State or territory for which implementation of WGS-84 is required.
2 Compliance with the requirements for implementation of WGS-84 for FIR and Enroute points, shown by:

FC - Fully compliant
PC - Partially compliant
NC - Not compliant
3 Compliance with the requirements for implementation of WGS-84 for Terminal Areas (arrival, departure and instrument approach procedures), shown by:

FC - Fully compliant
PC - Partially compliant
NC - Not compliant
4 Compliance with the requirements for implementation of WGS-84 for Aerodrome, shown by:

FC - Fully compliant
PC - Partially compliant
NC - Not compliant
5 Compliance with the requirements for implementation of Geoid Undulation, shown by:
FC - Fully compliant
PC - Partially compliant
NC - Not compliant
6 Action Plan - short description of the State’s Action Plan with regard to WGS-84 implementation, especially for items with a "PC", "PI", "NC" or "NI" status, including planned date(s) of full compliance, as appropriate.
7 Remarks - additional information, including detail of "PC" and "NC", as appropriate.

TABLE B0-DATM-3-3
World Geodetic System-1984 (WGS-84)

State	FIR/ENR	Terminal	AD	GUND	Action Plan	Remarks
1	2	3	4	5	6	7
BAHARAIN	FC	FC	FC	FC		Plan to be updated by 2016
EGYPT	FC	FC	FC	FC		
IRAN, ISLAMIC REPUBLIC OF	FC	FC	FC	FC		
IRAQ	PC	PC	PC	NC	National AIM Roadmap-2014	
JORDAN	FC	FC	FC	FC		
KUWAIT	FC	FC	FC	FC		Last survey FEB 2015
LEBANON	FC	FC	FC	NC	National AIM Roadmap-2014	
LIBYA	PC	PC	NC	NC	No Action Plan	
OMAN	FC	FC	FC	FC		
QATAR	FC	FC	FC	FC		Annual Validation/Survey Updates planned up to 2017
SAUDI ARABIA	FC	FC	FC	FC		
SUDAN	FC	FC	FC	FC		
SYRIAN ARAB REPUBLIC	FC	FC	FC	NC	No Action Plan	
UNITED ARAB EMIRATES	FC	FC	FC	FC		
YEMEN	FC	FC	FC	FC		

Table B0-DATM-3-4-1
 Provision of Terrain and Obstacle data sets for Areas 1 and 4

EXPLANATION OF THE TABLE

Column
1 Name of the State or territory for which Terrain and Obstacle data sets for Areas 1 and 4 are required.

2 Compliance with requirement for the provision of Terrain data sets for Area 1, shown by:

FC - Fully Compliant
PC - Partially Compliant
NC - Not Compliant

3 Compliance with requirement for the provision of Terrain data sets for Area 4, shown by:

FC - Fully Compliant
PC - Partially Compliant
NC - Not Compliant
N/A - Not Applicable

4 Compliance with requirement for the provision of Obstacle data sets for Area 1, shown by:

FC - Fully Compliant
PC - Partially Compliant
NC - Not Compliant

5
Compliance with requirement for the provision of Obstacle data sets for Area 4, shown by:

FC - Fully Compliant
PC - Partially Compliant
NC - Not Compliant
N/A - Not Applicable

6 Action plan - short description of the State's Action Plan with regard to compliance with the requirements for provision of Terrain and Obstacle data sets for Areas 1 and 4, especially for items with a "PC" or "NC" status, including planned date(s) of full compliance, as appropriate.
7 Remarks— additional information, including detail of "PC" and "NC", as appropriate.

TABLE B0-DATM-3-4-1
Provision of Terrain and Obstacle data sets for Areas 1 and 4

State	Terrain data sets		Obstacle data sets		Action Plan	Remarks
	Area 1	Area 4	Area 1	Area 4		
	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$		
BAHARAIN	FC	FC	FC	FC		
EGYPT	FC	FC	PC	PC	National AIM Roadmap-2015	
IRAN, ISLAMIC REPUBLIC OF	FC	FC	FC	FC		7
IRAQ						
JORDAN	NC	NC	NC	NC	NC	National AIM Roadmap-2014
KUWAIT	FC	FC	FC	NC	National AIM Roadmap-2014	
LEBANON	NC	N/A	NC	N/A	National AIM Roadmap-2014	
LIBYA	NC	N/A	NC	N/A	No Action Plan	
OMAN	NC	N/A	NC	N/A	National AIM Roadmap-2014	
QATAR	FC	FC	FC	FC		
SAUDI ARABIA	FC	FC	FC	FC		
SUDAN	NC	N/A	NC	N/A	National AIM Roadmap-2015	
SYRIAN ARAB REPUBLIC	NC	N/A	NC	N/A	No Action Plan	
UNITED ARAB EMIRATES	PC	FC	PC	FC	National AIM Roadmap-2014	
YEMEN	NC	N/A	NC	N/A	No Action Plan	

Table B0-DATM-3-4-2
 Provision of Terrain and Obstacle data sets for Area 2

EXPLANATION OF THE TABLE

Column
1 Name of the State or territory for which Terrain and Obstacle data sets for Area 2 are required.

2 Compliance with requirement for the provision of Terrain data sets for Area 2a, shown by:

FC - Fully Compliant
PC - Partially Compliant
NC - Not Compliant
Compliance with requirement for the provision of Terrain data sets for Area 2 b , shown by:

FI - Fully Implemented
PI - Partially Implemented
NI - Not implemented
N/A - Not Applicable
Compliance with requirement for the provision of Terrain data sets for Area 2c, shown by:

FI - Fully Implemented
PI - Partially Implemented
NI - Not Implemented
N/A - Not Applicable
Compliance with requirement for the provision of Terrain data sets for Area 2d, shown by:

FI - Fully Implemented
PI - Partially Implemented
NI - Not Implemented
N/A - Not Applicable
6 Compliance with requirement for the provision of Obstacle data sets for Area 2a, shown by:

FC - Fully Compliant
PC - Partially Compliant
NC - Not Compliant
7 Compliance with requirement for the provision of Obstacle data sets for Area 2b, shown by:

FI - Fully Implemented
PI - Partially Implemented
NI - Not implemented
N/A - Not Applicable
8 Compliance with requirement for the provision of Obstacle data sets for Area 2c, shown by:

FI - Fully Implemented

PI - Partially Implemented
NI - Not Implemented
N/A - Not Applicable
9 Compliance with requirement for the provision of Obstacle data sets for Area 2d, shown by:

FI - Fully Implemented
PI - Partially Implemented
NI - Not Implemented
N/A - Not Applicable
10 Action plan - short description of the State's Action Plan with regard to compliance with the requirements for provision of Terrain and Obstacle data sets for Area 2, especially for items with a "PC", "PI", "NC" or "NI" status.

Remarks- additional information, including detail of "PC", "PI" and "NC", "NI", as appropriate.

TABLE B0-DATM-3-4-2
Provision of Terrain and Obstacle data sets for Area 2

State	Terrain data sets				Obstacle data sets				Action Plan	Remarks
	Area 2a	Area 2b	Area 2c	$\begin{gathered} \text { Area } \\ 2 d \\ \hline \end{gathered}$	$\begin{gathered} \text { Area } \\ 2 a \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Area } \\ \text { 2b } \\ \hline \end{gathered}$	Area 2c	$\begin{gathered} \text { Area } \\ \text { 2d } \\ \hline \end{gathered}$		
1	2	3	4	5	6	7	8	9	10	11
BAHARAIN	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2015	
EGYPT	PC	PI	PI	PI	NC	NI	NI	NI	National AIM Roadmap-2015	
IRAN, ISLAMIC REPUBLIC OF	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2015	
IRAQ	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2014	
JORDAN	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2014	
KUWAIT	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2015	
LEBANON	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2014	
LIBYA	NC	NI	NI	NI	NC	NI	NI	NI	No Action Plan	
OMAN	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2014	Area 2a, 2b, 2c and 2d: Dec 2016
QATAR	FC	FI	FI	FI	FC	FI	FI	FI		
SAUDI ARABIA	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2014	
SUDAN	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2015	
SYRIAN ARAB REPUBLIC	NC	NI	NI	NI	NC	NI	NI	NI	No Action Plan	
UNITED ARAB EMIRATES	NC	NI	NI	NI	NC	NI	NI	NI	National AIM Roadmap-2014	
YEMEN	NC	NI	NI	NI	NC	NI	NI	NI	No Action Plan	

Table B0-DATM-3-4-3

Provision of Terrain and Obstacle data sets for Area 3 and Airport Mapping Databases (AMDB)

EXPLANATION OF THE TABLE

Column

1 Name of the State or territory for which Terrain and Obstacle data sets for Area 3 and AMDB are required.

2 Compliance with requirement for the provision of Terrain data sets for Area 3, shown by:

FI - Fully Implemented
PI - Partially Implemented
NI - Not Implemented
N/A - Not Applicable

Compliance with requirement for the provision of Obstacle data sets for Area 3, shown by:

FI - Fully Implemented
PI - Partially Implemented
NI - Not Implemented
N/A - Not Applicable
Implementation of AMDB, shown by:
FI - Fully Implemented
PI - Partially Implemented
NI - Not Implemented
N/A - Not Applicable
5 Action plan - short description of the State's Action Plan with regard to compliance with the requirements for provision of Terrain and Obstacle data sets for Area 3 and AMDB implementation, especially for items with a "PC", "PI", "NC" or "NI" status.

Remarks- additional information, including detail of "PI" and "NI", as appropriate.

TABLE B0-DATM-3-4

Provision of Terrain and Obstacle data sets for Area 3 and Airport Mapping Databases (AMDB)

State	Terrain data sets (Area 3)	Obstacle data sets (Area 3)		Action Plan	
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$			

B0 - AMET: Meteorological information supporting enhanced operational efficiency and safety

Description and purpose

Global, regional and local meteorological information:
a) forecasts provided by world area forecast centres (WAFC), volcanic ash advisory centres (VAAC) and tropical cyclone advisory centres (TCAC);
b) aerodrome warnings to give concise information of meteorological conditions that could adversely affect all aircraft at an aerodrome including wind shear; and
c) SIGMETs to provide information on occurrence or expected occurrence of specific en-route weather phenomena which may affect the safety of aircraft operations and other operational meteorological (OPMET) information, including METAR/SPECI and TAF, to provide routine and special observations and forecasts of meteorological conditions occurring or expected to occur at the aerodrome.

This module includes elements which should be viewed as a subset of all available meteorological information that can be used to support enhanced operational efficiency and safety.

Main performance impact:

KPA- 01 - Access and Equity	KPA-02 - Capacity	KPA-04 - Efficiency	KPA-05 - Environment	KPA-10 - Safety
N	Y	Y	Y	Y

Applicability consideration:

Applicable to traffic flow planning, and to all aircraft operations in all domains and flight phases, regardless of level of aircraft equipage.

B0 - AMET: Meteorological information supporting enhanced operational efficiency and safety

Elements	Applicability	Performance Indicators/Supporting Metrics	Targets
SADIS 2G and Secure SADIS FTP	All States	Indicator: \% of States having implemented SADIS 2G satellite broadcast or Secure SADIS FTP service Supporting metric: number of States having implemented SADIS 2G satellite broadcast or Secure SADIS FTP service	90\% by Dec. 2015 100\% by Dec. 2017
QMS	All States	Indicator: \% of States having implemented QMS for MET Supporting metric: number of States having implemented QMS for MET	60\% by Dec. 2015 80\% by Dec. 2017

Table B0-AMET 3-1

SADIS 2G and Secure SADIS FTP

EXPLANATION OF THE TABLE

Column

1 Name of the State
2, 3 Status of implementation of SADIS 2G and/or Secure SADIS FTP, where:
Y - Yes, implemented
N - No, not implemented

Implementation	
$\begin{aligned} & \infty \\ & \underset{\sim}{U} \\ & \underset{\sim}{N} \\ & N \end{aligned}$	
2	3
Y	Y
Y	Y
Y	N
Y	Y
N	Y
Y	Y
N	N
Y	Y
Y	Y
Y	N
Y	Y
Y	Y
Y	N
Y	Y
Y	N

Table B0-AMET 3-2

Volcanic Ash Advisory Centers

EXPLANATION OF THE TABLE

Column

1 Name of the State responsible for the provision of a volcanic ash advisory centre (VAAC)
2 Name of the VAAC
Note: The name is extracted from the ICAO Location Indicators (Doc 7910).
3 ICAO location indicator of the VAAC
4 Status of implementation of volcanic ash advisory information, where:
FC - Fully compliant
PC - Partially compliant
NC - Not compliant
5 Status of implementation of volcanic ash advisory information in graphical format, where:
FC - Fully compliant
PC - Partially compliant
NC - Not compliant

State	Volcanic Ash Advisory Centre (VAAC)	ICAO Location Indicator	Status of Implementation	
			VAA	VAG
1	2	3	4	5
FRANCE	Toulouse	LFPW	FC	FC

Table B0-AMET 3-3

Tropical Cyclone Advisory Centers

EXPLANATION OF THE TABLE

Column

1 Name of the State responsible for the provision of a tropical cyclone advisory centre (TCAC)
2 Name of the TCAC
Note: The name is extracted from the ICAO Location Indicators (Doc 7910).
3 ICAO location indicator of the TCAC
4 Status of implementation of tropical cyclone advisory information, where:
FC - Fully compliant
PC - Partially compliant
NC - Not compliant
5 Status of implementation of tropical cyclone advisory information in graphical format, where:
FC - Fully compliant
PC - Partially compliant
NC - Not compliant

State	Tropical Cyclone Advisory Centre (TCAC)	ICAO Location Indicator		Status of Implementation	
		TCA	TCG		
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
INDIA	New Delhi	VIDP	FC	FC	

Table B0-AMET 3-4

Quality Management System

EXPLANATION OF THE TABLE

Column
1 Name of the State
2, 3, 4, Status of implementation of Quality Management System of meteorological information -
5 QMS: not started/ planning, ongoing/ partially implemented, Implemented/ISO 9001
Certified, Date of Certification.
6 Action Plan
7 Remarks

State	Notstarted/planning	$\begin{gathered} \hline \text { Ongoing/ } \\ \text { partially } \\ \text { implemented } \end{gathered}$	Implemented/ ISO 9001 Certified		Action Plan	Remarks
			Status	Date of Certification		
1	2	3	4	5	6	7
BAHARAIN			$\sqrt{ }$	2008		
EGYPT			\checkmark	23 May 2012		
IRAN, ISLAMIC REPUBLIC OF		$\sqrt{ }$			No Action Plan	
IRAQ	\checkmark				No Action Plan	
JORDAN			$\sqrt{ }$	2 Apr 2014		
KUWAIT			\checkmark	23 Aug 2013		
LEBANON	\checkmark				No Action Plan	
LIBYA	$\sqrt{ }$				No Action Plan	
OMAN		\checkmark			TBD	
QATAR			$\sqrt{ }$	Dec 2011		
$\begin{aligned} & \hline \text { SAUDI } \\ & \text { ARABIA } \end{aligned}$			$\sqrt{ }$	Aug 2014		
SUDAN			$\sqrt{ }$	5 June 2014		
SYRIAN ARAB REPUBLIC	$\sqrt{ }$				No Action Plan	
UNITED ARAB EMIRATES			$\sqrt{ }$	19 Dec 2012		
YEMEN	$\sqrt{ }$				No Action Plan	

B0 - FRTO: Improved Operations through Enhanced En-Route Trajectories

Description and purpose

To allow the use of airspace which would otherwise be segregated (i.e. special use airspace) along with flexible routing adjusted for specific traffic patterns. This will allow greater routing possibilities, reducing potential congestion on trunk routes and busy crossing points, resulting in reduced flight length and fuel burn.

Main performance impact:

KPA- 01 - Access and Equity	KPA-02 - Capacity	KPA-04 - Efficiency	KPA-05 - Environment	KPA-10 - Safety
Y	Y	Y	Y	N/A

Applicability consideration:

Applicable to en-route and terminal airspace. Benefits can start locally. The larger the size of the concerned airspace the greater the benefits, in particular for flex track aspects. Benefits accrue to individual flights and flows. Application will naturally span over a long period as traffic develops. Its features can be introduced starting with the simplest ones.

B0-FRTO: Improved Operations through Enhanced En-Route Trajectories			
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets
Flexible use of airspace (FUA)	All States	Indicator: \% of States that have implemented FUA Supporting metric*: number of States that have implemented FUA	$\begin{aligned} & 40 \% \text { by Dec. } \\ & 2017 \end{aligned}$
Flexible routing	All States	Indicator: \% of required Routes that are not implemented due military restrictions (segregated areas) Supporting metric 1: total number of ATS Routes in the Mid Region Supporting metric 2*: number of required Routes that are not implemented due military restrictions (segregated areas)	$\begin{aligned} & \hline 60 \% \text { by Dec. } \\ & 2017 \end{aligned}$

* Implementation should be based on the published aeronautical information

Table B0-FRTO

EXPLANATION OF THE TABLE

Column

1 Name of the State
2 Status of implementation of Flexible Use of Airspace (FUA). The Implementation should be based on the published aeronautical information:

> FI - Fully Implemented
> PI - Partially Implemented
> NI - Not Implemented

3 Total Number of ATS Routes in the State.
4 Total number of required routes (through Regional Agreement) to be implemented through segregated areas
5 Number of routes that are NOT implemented in the State due military restrictions (segregated areas)
6 Remarks

Applicability State	FUA Implemented	Total number of ATS Routes	Total number of required routes to be implemented through segregated areas	Number of routes that are NOT implemented due military restrictions (segregated areas)	Remarks
1	2	3	4	5	6
Bahrain	FI	78	1 (UM430)	0	Time route
Egypt					
Iran					
Iraq	PI	15	0	2	P/UP975 closed btw SIDNA \& MUTAG
Jordan	PI	12	1 (UM690)	1 (G662)	
Lebanon	PI	9	1 (M1)	M1 (KAD-LATEB)	
Libya					
Kuwait					
Oman					
Qatar					
Saudi Arabia	PI	153	1 (RC083)	0	
Sudan	PI	16	4	2	
Syria	PI	19	0	0	
Unite Arab Emirates	PI	41	3	4	
Yemen					
Total					
Percentage					

B0 - NOPS: Improved Flow Performance through Planning based on a Network-Wide view

Description and purpose

Air Traffic Flow Management (ATFM) is used to manage the flow of traffic in a way that minimizes delay and maximizes the use of the entire airspace. ATFM can regulate traffic flows involving departure slots, smooth flows and manage rates of entry into airspace along traffic axes, manage arrival time at waypoints or Flight Information Region (FIR)/sector boundaries and re-route traffic to avoid saturated areas. ATFM may also be used to address system disruptions including crisis caused by human or natural phenomena.

Experience clearly shows the benefits related to managing flows consistently and collaboratively over an area of a sufficient geographical size to take into account sufficiently well the network effects. The concept for ATFM and demand and capacity balancing (DCB) should be further exploited wherever possible. System improvements are also about better procedures in these domains, and creating instruments to allow collaboration among the different actors.

Guidance on the implementation of ATFM service are provided in the ICAO Doc 9971- Manual on Collaborative
Air Traffic Flow Management

Main performance impact:

Applicability consideration:

Applicable to en-route and terminal airspace. Benefits can start locally. The larger the size of the concerned airspace the greater the benefits. Application will naturally span over a long period as traffic develops.

B0- NOPS: Imp	Flow Perf	nce through Planning based on a Network-Wide view	
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets
ATFM Measures implemented in collaborative manner	All States	Indicator: \% of States that have established a mechanism for the implementation of ATFM Measures based on collaborative decision Supporting metric: number of States that have established a mechanism for the implementation of ATFM Measures based on collaborative decision	$\begin{array}{lll} \hline 100 \% & \text { by } & \text { Dec. } \\ 2017 \end{array}$

Table B0-NOPS

TBD

- END -

[^0]: ${ }^{1}$ Refer to Table AOP II-1

