International Civil Aviation Organization

MIDANPIRG Communication, Navigation and Surveillance Sub-Group

Seventh Meeting (CNS SG/7) (*Cairo, Egypt, 31 May - 02 June 2016*)

Agenda Item 4: CNS Planning and Implementation in the MID Region

REVIEW CNS PARTS OF THE MID eANP

(Presented by the Secretariat)

SUMMARY This paper presents the outcome of the MSG/5 related to the MID eANP and calls for the update of the CNS related information

Action by the meeting is at paragraph 3.

REFERENCES

• MID eANP

- MSG/5 REPORT

1. INTRODUCTION

1.1 The 12th Air Navigation Conference (AN-Conf/12), through Recommendation 6/1 [Regional performance framework – planning methodologies and tools], agreed that the regional air navigation plans (ANP) be aligned with the Fourth Edition of the Global Air Navigation Plan (GANP) (Doc 9750).

1.2 The ICAO Council approved the new eANP Template (Volumes I, II and III) and corresponding procedure for amendment on 18 June 2014 (202nd session, fourth meeting).

1.3 The Fifth meeting of the MIDANPIRG Steering Group (MSG/5) was held at the Meeting Room of the ICAO Middle East Regional Office in Cairo, Egypt, from 18 to 20 April 2016.

2. **DISCUSSION**

Approval of the MID eANP VOL I, II and III

2.1 The meeting may wish to recall that, the MIDANPIRG/15 meeting reviewed and endorsed the MID eANP VOL I, II and III and agreed to the following Conclusion:

CONCLUSION 15/11: ENDORSEMENT OF THE MID eANP

That,

a) the new MID ANP VOL I, II and III available at: <u>http://www.icao.int/MID/MIDANPIRG/Pages/Final%20Report/MID-eANP.aspx</u> are endorsed; and b) the ICAO MID Regional Office process the necessary Proposals for Amendment, in accordance with the procedure for amendment approved by the Council, for formal approval by the end of 2015.

2.2 As a follow-up action to the above Conclusion, the ICAO MID Regional Office issued Proposal for Amendment (PfA) to the MID eANP Volume I on 18 November 2015. The PfA was approved by the President of the Council on 21 December 2015.

2.3 Further to the approval of the MID eANP Volume I, the PfA to the MID eANP Volume II was issued on 21 December 2015 and approved on 14 February 2016.

2.4 Taking into consideration the MIDANPIRG/15 endorsement of the MID eANP (Conclusion 15/11) and the standard procedure for amendment (related to Volume III), the notification of approval of the MID eANP Volume III was issued on 15 February 2016.

2.5 The meeting may wish to note that the MID Region was the first Region that completed the transition from the old Basic ANP and FASID to the new eANP format.

2.6 The MID eANP Volume I, II and III are available on the ICAO MID website at: http://www.icao.int/MID/Pages/MIDeANP.aspx

2.7 A meeting of the Global eANP WG is tentatively scheduled for 2017 in order to further review the eANP template approved by the ICAO Council and make proposals for improvement, as deemed necessary, in particular for the "General Regional Requirements" parts. The eANP WG would also identify the tools and features to be developed on the eANP online framework, taking into consideration stakeholders needs.

Procedure/mechanism for the amendment of the MID eANP

2.8 The MSG/5 meeting was apprised of the status of the MID Air Navigation Plan (MID eANP) and the need for the development of a mechanism for the amendment of the MID eANP Volume III. In this regard, The MSG/5 meeting recalled that the ANP Volume III contains dynamic/flexible plan elements related to the implementation of the air navigation system and its modernization in line with the ICAO Aviation System Block Upgrades (ASBUs) and associated technology roadmaps described in the Global Air Navigation Plan (GANP).

2.9 The information contained in Volume III is related mainly to:

- <u>Planning</u>: objectives set, priorities and targets planned at regional or sub-regional levels;
- <u>Implementation monitoring and reporting</u>: monitoring of the progress of implementation towards targets planned. This information should be used as the basis for reporting purposes (i.e.: global and regional air navigation reports and performance dashboards); and/or
- <u>Guidance</u>: providing regional guidance material for the implementation of specific system/procedures in a harmonized manner.

2.10 The management of Volume III is the responsibility of the MIDANPIRG. Volume III should be used as a tool for monitoring and reporting the status of implementation of the elements planned here above, through the use of tables/databases and/or references to online monitoring tools, as endorsed by MIDANPIRG. The status of implementation is updated on a regular basis as endorsed by MIDANPIRG.

- a State (or a group of States); or
- MIDANPIRG or its Subsidiary Bodies; or
- the ICAO Secretariat; or
- International Organizations directly concerned with the operation of aircraft.

2.12 If the proposal concerns an amendment of the provisions in Part 0 - "Introduction" or Part I - "General Planning Aspects" of Volume III, the ICAO MID Regional Office will submit the proposal to ICAO Headquarters (Air Navigation Bureau) for coordination with all ICAO Regional Offices. The views of the ICAO Regional Offices will be taken into consideration in the consolidation/approval of the amendment by ICAO HQ. The approved amendment will be published in Volume III of all regional plans at convenient intervals.

2.13 The MSG/5 meeting agreed that a mechanism for the amendment of the MID eANP Volume III Part II - "Air Navigation System Implementation" should be developed, endorsed by MIDANPIRG and reflected in the MIDANPIRG Procedural Handbook. The meeting agreed that the mechanism would be developed by the ICAO MID Regional Office in coordination with concerned parties, and should include the following:

- Collection of information/initiation of amendment;
- Validation of the information (different layers of validation might be needed);
- Notification of change/consultation, as deemed necessary;
- Amend Volume III

2.14 The meeting recalled that one of the objectives of the development of the new eANP was the provision of online tools which support the amendment of the dynamic data (with different layers of approval) in an easy and timely manner. Accordingly, the development of the mechanism for the amendment of the MID eANP Volume III Part II - "Air Navigation System Implementation" and its automation should be closely coordinated with ICAO HQ and all the ICAO Regions.

2.15 The meeting agreed that in order to facilitate the coordination of all issues related to the MID eANP (collection and validation of information, notification of the changes/consultation, as deemed necessary, etc.), States should assign a focal point. Accordingly, the MSG/5 meeting agreed to the following MSG Conclusion:

MSG CONCLUSION 5/2: MID eANP FOCAL POINTS

That, States be urged to assign a MID eANP focal point to be the main point of contact for all issues related to the MID eANP, including the validation of amendments to Volume III Part II - "Air Navigation System Implementation".

2.16 The MID eANP Volume I, II and III are available on the ICAO MID website at: http://www.icao.int/MID/Pages/MIDeANP.aspx. **Appendix A** is extract of the CNS related parts from Volume I and II, **Appendix B** is extract for Volume III CNS related and **Appendix C** is current table used for the monitoring of B0-ACAS implementation, needs to be incorporated in the MID eANP.

3. ACTION BY THE MEETING

- 3.1 The meeting is invited to:
 - a) note the information contained in this paper;

- b) review and update, as necessary, Appendices A, B and C; and
- c) propose any new tables, as required, for the monitoring of CNS related ASBU modules.

APPENDIX A

MID AIR NAVIGATION PLAN

VOLUME I

MID ANP, VOLUME I

PART III – COMMUNICATIONS, NAVIGATION AND SURVEILLANCE (CNS)

1. INTRODUCTION

1.1 This part of the MID ANP constitutes the agreed regional requirements considered to be the minimum necessary for effective planning and implementation of Communications, Navigation and Surveillance (CNS) facilities and services in the MID Region and complements the provisions of ICAO SARPs and PANS related to CNS. It contains stable plan elements related to the assignment of responsibilities to States for the provision of CNS facilities and services within the ICAO MID region in accordance with Article 28 of the *Convention on International Civil Aviation* (Doc 7300) and mandatory requirements related to the CNS facilities and services to be implemented by States in accordance with regional air navigation agreements.

1.2 The dynamic plan elements related to the assignment of responsibilities to States for the provision of CNS facilities and services and the mandatory requirements based on regional air navigation agreements related to CNS are contained in the MID ANP Volume II, Part III – CNS.

1.3 The MID ANP Volume III contains dynamic/flexible plan elements related to the implementation of air navigation systems and their modernization in line with the ICAO Aviation System Block Upgrades (ASBUs) methodology and associated technology roadmaps described in the Global Air Navigation Plan. The ASBU modules are aimed at increasing capacity and improving efficiency of the aviation system whilst maintaining or enhancing safety level, and achieving the necessary harmonization and interoperability at regional and global level. This includes the regionally agreed ASBU modules applicable to the specified ICAO region/sub-region and associated elements/enablers necessary for the monitoring of the status of implementation of these ASBU modules.

1.4 In planning for these elements, economy and efficiency should be taken into account in order to ensure that the requirements for the provision of CNS facilities and services can be kept to a minimum. CNS facilities and services should fulfil multiple functions whenever this is feasible.

Standards and Recommended Practices and Procedures for Air Navigation Services

1.5 The SARPs and PANS and related guidance material applicable to the provision of CNS are contained in:

- a) Annex 10 Aeronautical Telecommunications, Volumes I, II, III, IV and V;
- b) Annex 2 -Rules of the Air;
- c) Annex 3 Meteorological Service for international air navigation;
- Annex 6 Operation of Aircraft, Parts I (Chapter 7), II (Chapter 7) and III (Chapter 5);
- e) Annex 11 Air Traffic Services;
- f) Annex 12 Search and Rescue;
- g) Annex 15 Aeronautical Information Services;

- h) Procedures for Air Navigation Services Air Traffic Management (PANS-ATM) (Doc 4444);
- i) Regional Supplementary Procedures (Doc 7030);
- j) GNSS Manual (Doc 9849);
- k) Manual on Detailed Technical Specifications for the Aeronautical Telecommunication Network (ATN) using ISO/OSI Standards and Protocols (Doc 9880);
- 1) ICAO Aeronautical Telecommunication Network (ATN) Manual for the ATN using IPS Standards and Protocols (Doc 9896);
- m) Manual of Testing of Radio Navigation Aids (Doc 8071);
- n) Manual on the Planning and Engineering of the Aeronautical Fixed Telecommunications Network (Doc 8259);
- o) Manual on Required Communication Performance (RCP) (Doc 9869);
- p) Training Manual (Doc 7192);
- q) Performance-based Navigation Manual (Doc 9613);
- r) Handbook on Radio Frequency Spectrum Requirements for Civil Aviation (Doc 9718);
- s) Manual on Airborne Surveillance Applications (Doc 9994); and
- t) Manual of Air Traffic Services Data Link Applications (Doc 9694).

2. GENERAL REGIONAL REQUIREMENTS

Communications

Aeronautical Fixed Service (AFS)

2.1 The aeronautical fixed service (AFS) should satisfy the communication requirements of ATS, AIS/AIM, MET and SAR, including specific requirements in terms of system reliability, message integrity and transit times, with respect to printed as well as digital data and speech communications. If need be, it should, following agreement between individual States and aircraft operators, satisfy the requirements for airline operational control.

The Aeronautical Telecommunication Network (ATN)

2.2 The ATN of the Region(s) should have sufficient capacity to meet the minimum requirements for data communications for the services mentioned in paragraph 2.1 above.

Aeronautical Mobile Service (AMS)

2.3 Air-ground communications facilities should meet the agreed communication requirements of the air traffic services, as well as all other types of communications which are acceptable on the AMS to the extent that the latter types of communications can be accommodated.

Air-ground communications for ATS

2.4 Air-ground communications for ATS purposes should be so designed to require the least number of frequency and channel changes for aircraft in flight compatible with the provision of the required service. They should also provide for the minimum amount of coordination between ATS units and provide for optimum economy in the frequency spectrum used for this purpose.

Air-ground data link communications

2.5 Air-ground data link communications should be implemented in such a way that they are regionally and globally harmonised and make efficient use of available communication means and ensure optimum economy in frequency spectrum use and system automation.

Navigation

2.6 Planning of aeronautical radio navigation services should be done on a total system basis, taking full account of the navigation capabilities as well as cost effectiveness. The total system composed of station-referenced navigation aids, satellite-based navigation systems and airborne capabilities should meet the performance based navigation (PBN) requirements for all aircraft using the system and should form an adequate basis for the provision of positioning, guidance and air traffic services.

2.7 Account should be taken of the fact that certain aircraft may be able to meet their navigation needs by means of self-contained or satellite-based aids, thus eliminating the need for the provision of station-referenced aids along the ATS routes used by such aircraft, as well as the need to carry on board excessive redundancies.

Surveillance

2.8 Planning of aeronautical surveillance systems should be made based on a system approach concept, where collaboration and sharing of data sources should be considered in support of an efficient use of the airspace.

Frequency Management

2.9 Frequency assignment planning in the Region should be carried out in accordance with the provisions of Annex 10 and *ICAO Handbook on Radio Frequency spectrum for Civil Aviation* (Doc 9718), supplemented, as necessary, by regional recommendations and technical criteria developed for this purpose.

3. SPECIFIC REGIONAL REQUIREMENTS

None.

MID AIR NAVIGATION PLAN

VOLUME II

MID ANP, VOLUME II

PART III – COMMUNICATIONS, NAVIGATION AND SURVEILLANCE (CNS)

1. INTRODUCTION

1.1 This part of the MID ANP, Volume II, complements the provisions in ICAO SARPs and PANS related to communication, navigation and surveillance (CNS). It contains dynamic plan elements related to the assignment of responsibilities to States for the provision of CNS facilities and services within a specified area in accordance with Article 28 of the *Convention on International Civil Aviation* (Doc 7300); and mandatory requirements related to CNS facilities and services to be implemented by States in accordance with regional air navigation agreements. Such agreement indicates a commitment on the part of the State(s) concerned to implement the requirement(s) specified.

2. GENERAL REGIONAL REQUIREMENTS

Communications

Aeronautical Fixed Service (AFS)

2.1 The aeronautical fixed service should comprise the following systems and applications that are used for ground-ground (i.e. point-to-point and/or point-to-multipoint) communications in the international aeronautical telecommunication service:

a) ATS direct speech circuits and networks;

b) meteorological operational circuits, networks and broadcast systems, including World Area Forecast System – Internet File Service (WIFS) and/or Satellite Distribution System for Information Relating to Air Navigation (SADIS);

c) the aeronautical fixed telecommunications network (AFTN);

d) the common ICAO data interchange network (CIDIN);

e) the air traffic services (ATS) message handling services (AMHS); and

f) the inter-centre communications (ICC).

2.2 To meet the data communication requirements, a uniform high-grade aeronautical network should be provided, based on the aeronautical telecommunication network (ATN), taking into account the existence and continuation of current networks.

2.3 Contingency procedures should be in place to ensure that, in case of a communication centre breakdown, all the parties concerned are promptly informed of the prevailing situation. All possible arrangements should be made to ensure that, in case of breakdown of a communications centre or circuit, at least high-priority traffic continues to be handled by appropriate means.

2.4 AFS planning should permit flexibility in detailed development and implementation. The required AFTN Stations and Centres are listed in the AFTN Plan in **Table CNS II-1**.

The Aeronautical Telecommunication Network (ATN)

- 2.5 The ATN should be able to:
- a) support applications carried by the existing networks;
- b) support gateways enabling inter-operation with existing networks; and

c) support ground-ground communications traffic associated with air-ground data link applications.

2.6 The ATN should make optimum use of dedicated bilateral/multilateral aeronautical links and other communication means commensurate with the operational Quality of Service (QoS) requirements.

2.7 The implementation of the ATN should take into account the need for cost-effective evolution in terms of network capacity, requirements and time-frame and allow for a progressive transition from existing communication networks and services to a uniform, harmonised and integrated communications infrastructure, capable of supporting the implementation of future aeronautical services such as Flight and Flow Information in a Collaborative Environment (F-FICE), System-Wide Information Management (SWIM) applications, etc.

2.8 In case means other than dedicated bilateral links are used by the ATN, States should ensure that service level agreements (SLA) are met in terms of implementation priority, high availability, priority in restoration of service and appropriate levels of security.

2.9 The ATN should provide for interregional connections to support data exchange and mobile routing within the global ATN.

2.10 In planning the ATN, provisions should be made, where required, for interfacing with other international networks. The Required ATN Infrastructure Routing Plan is described under **Table CNS II-2**.

Network services

2.11 The Internet Society (ISOC) communications standards for the Internet Protocol Suite (IPS) should be used for the implementation of AMHS.

2.12 The migration from legacy bit-oriented protocols such as X.25 Protocol suite to IPS should be planned.

2.13 The migration of international or sub-regional ground networks to the ATN based on Internet Protocol (IP) to support AFS communication requirements, while reducing costs, should be planned.

2.14 States should ensure that the solutions provided for the implementation of the ATN meet the air traffic management and aeronautical fixed service requirements. Such requirements should consist of:

- a) Performance requirements: availability, continuity, integrity, monitoring and alerting criteria per data flow. In the case where a required communication performance (RCP) is globally prescribed, requirements derived from RCP should be stated;
- b) Interoperability requirements;
- c) Safety and security requirements, duly derived after the identification of operational hazards and threats, and allocation of objectives; and
- d) Implementation process requirements (creation, test, migration, upgrades, priority in restoration of service, termination).

Network management

2.15 An ICAO centralised off-line network management service is provided to participating AFTN/ AMHS centres in the MID Region under the ATS Messaging Centre (AMC).

2.16 In the case of integrated communications services procured and shared by several States, organizational provisions should allow for the planning and performing of the management of technical performance, network configuration, fault, security, cost division/allocation, contract, orders and payment.

Specific air traffic management (ATM) requirements

2.17 Where ATS speech and data communication links between any two points are provided, the engineering arrangements should be such as to avoid the simultaneous loss of both circuits. The required ATS direct speech circuits plan is detailed under **Table CNS II-3**.

2.18 Special provisions should be made to ensure a rapid restoration of ATS speech circuits in case of outage, as derived from the performance and safety requirements.

2.19 Data circuits between ATS systems should provide for both high capacity and message integrity.

2.20 The Inter-Centre Communication (ICC), consisting of ATS Inter-facility Data Communication (AIDC) application and the Online Data Interchange (OLDI) application, should be used for automated exchange of flight data between ATS units to enhance the overall safety of the ATM operation and increase airspace capacity.

2.21 Where Voice over IP is planned or implemented between ATS units for voice communications, it should meet the ATS requirements. When data and voice are multiplexed, particular attention should be paid to the achievement of the ATM performance and safety requirements.

Specific meteorological (MET) requirements

2.22 The increasing use of the GRIB (Gridded Binary or General Regularly-distributed Information in Binary form) and BUFR (Binary Universal Form for the Representation of meteorological data) code forms for the dissemination of the upper wind and temperature and significant weather forecasts and the planned transition to digital form using extensible markup language (XML)/geography markup language (GML) for the dissemination of OPMET data should be taken into account in the planning process of the ATN.

2.23 In planning the ATN, account should be taken of changes in the current pattern of distribution of meteorological information resulting from the increasing number of long-range direct flights and the trend towards centralized flight planning.

Specific aeronautical information management (AIM) requirements

2.24 The aeronautical fixed service should meet the requirements to support efficient provision of aeronautical information services through appropriate connections to area control centres (ACCs), flight information centres (FICs), aerodromes and heliports at which an information service is established.

Aeronautical Mobile Service (AMS)

2.25 To meet the air-ground data communication requirements, a high-grade aeronautical network should be provided based on the ATN, recognising that other technologies may be used as part of the transition. The network needs to integrate the various data links in a seamless fashion and provide for end-to-end communications between airborne and ground-based facilities.

2.26 Whenever required, use of suitable techniques on VHF or higher frequencies should be made. The required HF network designators applicable for the MID Region are listed in **Table CNS II-4**.

2.27 Aerodromes having a significant volume of International General Aviation (IGA) traffic should also be provided with appropriate air-ground communication channels.

Air-Ground Data Link Communications

2.28 A Strategy for the harmonised implementation of the data link communications in the MID Region should be developed based on the Global Operational Data Link Document (GOLD) adopted by ICAO Regions and the Aviation System Block Upgrade (ASBU) methodology.

2.29 Where applicable, controller-pilot data link communications (CPDLC), based on ATN VDL data link Mode 2 (VDL2) and/or FANS-1/A, should be implemented for air-ground data link communications.

2.30 Partial or divergent aircraft data link evolutions that result in excluding messages from aircraft systems should not be pursued. Interim steps or phases toward full implementation of the common technical definition in ground systems should only be pursued on a regional basis, after coordination between all States concerned.

2.31 Harmonization of operational procedures for implementation of the above packages is essential. States, Planning and Implementation Regional Groups (PIRGs) and air navigation services providers should adopt common procedures to support seamless ATS provision across FIR boundaries, rather than each State or Region developing and promulgating unique procedures for common functions.

Required Communication Performance (RCP)

2.32 The Required Communication Performance (RCP) concept characterizing the performance required for communication capabilities that support ATM functions without reference to any specific technology should be applied wherever possible.

2.33 States should determine, prescribe and monitor the implementation of the RCP in line with the provisions laid down in the *ICAO Manual on Required Communication Performance* (Doc 9869).

Navigation

Navigation Infrastructure

2.34 The navigation infrastructure should meet the requirements for all phases of flight from take-off to final approach and landing.

Note: Annex 10 to the Convention on International Civil Aviation—Aeronautical Telecommunications, Volume I — Radio Navigation Aids, Attachment B, provides the strategy for introduction and application of non-visual aids to approach and landing.

2.35 The *MID Region PBN Implementation Plan* provides guidance to air navigation service providers, airspace operators and users, regulators, and international organizations, on the expected evolution of the regional air navigation system in order to allow planning of airspace changes, enabling ATM systems and aircraft equipage. It takes due account of the operational environment of the MID Region.

PBN Transition Strategy

2.36 During transition to performance-based navigation (PBN), sufficient ground infrastructure for conventional navigation systems should remain available. Before existing ground infrastructure is considered for removal, users should be given reasonable transition time to allow them to equip appropriately to attain a performance level equivalent to PBN. States should approach removal of existing ground infrastructure with caution to ensure that safety is not compromised. This should be guaranteed by conducting safety assessments and consultations with the users.

Use of specific navigation aids

2.37 Where, within a given airspace, specific groups of users have been authorized by the competent authorities to use special aids for navigation. The respective ground facilities should be located and aligned so as to provide for full compatibility of navigational guidance with that derived from the SARPs.

2.38 States should ensure and oversee that service providers take appropriate corrective measures promptly whenever required by a significant degradation in the accuracy of navigation aids (either space based or ground based or both) is detected.

Surveillance

2.40 An important element of modern air navigation infrastructure required to manage safely increasing levels and complexity of air traffic is aeronautical surveillance systems.

2.41 When operating Mode S radars, States should coordinate with their respective ICAO Regional Office the assignment of their corresponding interrogator identifier (II) codes and surveillance identifier (SI) codes, particularly where areas of overlapping coverage will occur.

Frequency Management

Aeronautical Mobile Service (AMS)

2.42 Frequencies should be assigned to all VHF aeronautical mobile service (AMS) facilities in accordance with the principles laid out in Annex 10, Volume V and *ICAO Handbook on Radio Frequency Spectrum Requirements for Civil Aviation* (Doc 9718) Volumes I and II, and take into account:

- a) agreed geographical separation criteria based on 25 kHz or 8.33 kHz interleaving between channels;
- b) agreed geographical separation criteria for the implementation of VDL services;
- c) the need for maximum economy in frequency demands and in radio spectrum utilization; and
- d) a deployment of frequencies which ensures that international services are planned to be free of interference from other services using the same band.

The priority order to be followed in the assignment of frequencies to service is:

- a) ATS channels serving international services (ACC, APP, TWR, FIS);
- b) ATS channels serving national purposes;
- c) channels serving international VOLMET services;
- d) channels serving ATIS and PAR; and
- e) channels used for other than ATS purposes.

2.44 The criteria used for frequency assignment planning for VHF AMS facilities serving international requirements should, to the extent practicable, also be used to satisfy the need for national VHF AMS facilities.

2.45 Special provisions should be made, by agreement between the States concerned, for the sharing and the application of reduced protection of non-ATS frequencies in the national sub-bands, so as to obtain a more economical use of the available frequency spectrum consistent with operational requirements.

2.46 States should ensure that no air/ground frequency is utilized outside its designated operational coverage and that the stated operational requirements for coverage of a given frequency can be met for the transmission sites concerned, taking into account terrain configuration.

Radio navigation aids for Aeronautical Radio Navigation Services (ARNS)

2.47 Frequencies should be assigned to all radio navigation facilities taking into account agreed geographical separation criteria to ILS localizer, VOR and GBAS, X and Y channels to DME, in accordance with the principles laid out in Annex 10, Volume V and *ICAO Handbook on Radio Frequency Spectrum Requirements for Civil Aviation* (Doc 9718) Volumes I and II. Also, the need for maximum economy in frequency demands and in radio spectrum utilization and a deployment of frequencies which ensures that international services are planned to be free of interference from other services using the same band, need to be considered.

2.48 The principles used for frequency assignment planning for radio navigation aids serving international requirements should, to the extent possible, also be used to satisfy the needs for national radio aids to navigation.

Support to ICAO Positions for ITU World Radiocommunication Conferences (WRCs)

2.49 Considering the importance and continuous demand of the radio frequency spectrum and for the protection of the current aeronautical spectrum and the allocation of new spectrum for the new services and system to be implemented in civil air navigation, States and international organizations are to support ICAO's position at ITU World Radiocommunication Conferences (WRCs) and in regional and other international activities conducted in preparation for ITU WRCs.

Note: The Handbook on Radio Frequency Spectrum Requirements for Civil Aviation (Doc 9718) Volume I, contains ICAO policy statements relevant to the aviation requirements for radio frequency spectrum. The handbook is intended to assist States and ICAO in preparing for ITU WRCs.

3. SPECIFIC REGIONAL REQUIREMENTS

3.1 The MIDAMC application available at: <u>http://www.midamc.jo</u> should be used for all AMHS address coordination and other AMHS and Network related matters.

3.2 The EUROCONTROL MICA application available at: <u>https://extranet.eurocontrol.int/http://webprisme.cfmu.eurocontrol.int/mica/Index.action</u> should be used for the Mode S SSR IC allocation and coordination.

2.43

TABLE CNS II-1 - AERONAUTICAL FIXED TELECOMMUNICATIONS NETWORK (AFTN) PLAN

EXPLANATION OF THE TABLE

Co	lumn
cv	ıunn

The AFTN Centres/Stations of each State are listed alphabetically. Each circuit appears

1 twice in the table. The categories of these facilities are as follows: M - Main AFTN COM Centre T - Tributary AFTN COM Centre **S** - AFTN Station Category of circuit: 2 M - Main trunk circuit connecting Main AFTN communication centres. T - Tributary circuit connecting Main AFTN communication centre and Tributary AFTN Communications Centre. S - AFTN circuit connecting an AFTN Station to an AFTN Communication Centre. 3 Type of circuit provided: LTT/a - Landline teletypewriter, analogue (e.g. cable, microwave) LTT/d - Landline teletypewriter, digital (e.g. cable, microwave) LDD/a - Landline data circuit, analogue (e.g. cable, microwave) LDD/d - Landline data circuit, digital (e.g. cable, microwave) SAT/a/d - Satellite link, with /a for analogue or /d for digital 4 Circuit signalling speed in bits/s. 5 Circuit protocols Data transfer code (syntax): 6 ITA-2 - International Telegraph Alphabet No. 2 (5-unit code). IA-5 - International Alphabet No. 5 (ICAO 7-unit code). CBI - Code and Byte Independency (ATN compliant). 7 Remarks

State/Station			Requirer	nent
Statt/Station	Category	Туре	Signalling Speed	Р
1	2	3	4	
BAHRAIN BAHRAIN				

State/Station			Kequirei	nent		Kennai KS
StatesStation	Category	Туре	Signalling Speed	Protocol	Code	
1	2	3	4	5	6	
BAHRAIN BAHRAIN ABU DHABI BEIRUT DOHA JEDDAH KUWAIT MUSCAT SINGAPORE TEHRAN	M M T M M M M M		64 – 9.6Kbps 64 – 9.6Kbps	CIDIN CIDIN AMHS CIDIN None None None	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5	All: AMHS by 2016

Remarks

			Requirement			Remarks
State/Station	Category	Туре	Signalling Speed	Protocol	Code	
1	2	3	4	5	6	
EGYPT CAIRO AMMAN ATHENS BEN GURION BEIRUT JEDDAH KHARTOUM NAIROBI TUNIS TRIPOLI	M M M M M T M M T		64-9.6Kbps 64-9.6Kbps 64-9.6Kbps 9.6 Kbps 128-9.6Kbps 9.6Kbps 9.6Kbps 64-9.6Kbps 64-9.6Kbps	AMHS CIDIN None CIDIN AMHS None None None None	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5	
TRIPOLI DAMASCUS ASMARA	T T T		9.6Kbps 64-9.6Kbps 9.6Kbps	None None None	IA-5 IA-5 IA-5	STNDBY
IRAN TEHRAN BAHRAIN KABUL KUWAIT ABU-DHABI KARACHI ANKARA MUSCAT DAMASCUS BAGHDAD	M M T M M M M T T T		64 Kbps - 64 Kbps 9.6 Kbps 64Kbps 64Kbps 64Kbps 50 BD 64Kbps	None - None None None None None None None	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 ITA-2 IA-5	planed PLANNED
IRAQ BAGHDAD AMMAN BEIRUT KUWAIT ANKARA	T T T T T	SAT	- 2MBps 2MBps 9.6Kbps	None None None	IA-5 IA-5 IA-5	VPN VPN Planed

			Requirement			
State/Station	Category	Туре	Signalling Speed	Protocol	Code	
1	2	3	4	5	6	
JORDAN AMMAN ABU DHABI BAGHDAD BEIRUT BEN GURION CAIRO DAMASCUS JEDDAH NICOSIA	T T M T T M T		2MBps 2MBps 2MBps 9.6 Kbps 64 – 9.6Kbps 64 – 9.6Kbps 64Kbps 9.6Kbps	AMHS AMHS AMHS None AMHS None AMHS AFTN	- IA-5 IA-5 X400 IA-5	VPN VPN Planed VPN Planed
KUWAIT KUWAIT BAHRAIN DAMASCUS BEIRUT DOHA Hamad-Airport KARACHI TEHRAN BAGHDAD	T M T T M M T	LDD/d LDD/a LDD/a LDD/a LDD/d LDD/d SAT/ad	64 – 9.6Kbps 64- 9.6 Kbps 64-9.6 Kbps 64 – 9.6Kbps 256Kbps 64-9.6 Kbps 64 – 9.6Kbps 9.6Kbps	None None None None None None None	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5	Back-up
LEBANON BEIRUT AMMAN BAGHDAD BAHRAIN CAIRO DAMASCUS JEDDAH KUWAIT NICOSIA	M M T M T M M M		2Mbps 2Mbps 64-9.6Kbps 9.6Kbps 64-9.6Kbps 64-9.6Kbps 64-9.6Kbps 9.6 Kbps	AMHS CIDIN CIDIN None None None CIDIN	IA- 5IA-5 IA-5 IA-5 IA-5 IA-5 IA-5	VPN in process VPN planed
LIBYA TRIPOLI MALTA TUNIS BENGHAZI CAIRO KHARTOUM	T T M T M T		9.6Kbps 64 – 9.6Kbps 9.6Kps	None None None	IA-5 IA-5	

			Remarks			
State/Station	Category	Туре	Signalling Speed	Protocol	Code	
1	2	3	4	5	6	
OMAN MUSCAT ABU DHABI BAHRAIN MUMBAI JEDDAH SANA'A KARACHI TEHRAN	T M M T M M		64Kbps 64Kbps 64Kbps 64Kbps 100 BD 64Kbps 64Kbps	AMHS None None None None None	IA-5 IA-5 IA-5 ITA-2 IA-5 IA-5	
QATAR DOHA BAHRAIN KUWAIT ABU DHABI	M M T		2Mbps 2Mbps 2Mbps	AFTN AMHS AMHS	IA-5 (TCP) X400(TCP) X400(TCP)	
SAUDI ARABIA JEDDAH ADDIS-ABABA BAHRAIN BEIRUT CAIRO MUSCAT SANA'A AMMAN KHARTOUM ABUDHABI NICOSIA	M M M M T M T T T M	SAT SAT SAT	9.6Kbps 64 – 9.6Kbps 64-9.6Kbps 128–9.6Kbps 64 Kbps 64Kbps 64Kbps 64Kbps 64Kbps 64Kbps	None CIDIN None AMHS None AMHS AMHS AMHS CIDIN	IA-5 IA-5 IA-5 X400 IA-5 IA-5 X400 X400 X400 IA-5	AMHS (2015 AMHS (2015 AMHS (2015 AMHS EUR/ MID OPMET
SUDAN KHARTOUM ADDIS ABABA ASMARA CAIRO JEDDAH TRIPOLI NDJAMENA	T M T M M T M		9.6Kbps 9.6Kbps 9.6Kbps 64Kbps 9.6Kbps 9.6Kbps	None None AMHS None None	IA-5 IA-5 IA-5 IA-5 IA-5	

		Requirement				Remarks
State/Station	Category	Туре	Signalling Speed	Protocol	Code	
1	2	3	4	5	6	
SYRIA DAMASCUS						
ATHENS	М		2 X 50 BD	None	ITA-2	
AMMAN	Т		64 – 9.6Kbps	None	IA-5	
BEIRUT	М		64-9.6Kbps	None	IA-5	
CAIRO	М		9.6Kbps	None	IA-5	
KUWAIT	М		64-9.6Kbps	None	IA-5	
TEHRAN	Т		50 BD	None	ITA-2	
UAE						
ABU DHABI						
BAHRAIN	М		9.6Kbps	CIDIN	IA-5	
AMMAN	Т	VPN	2 Mbps	AMHS		VPN
MUSCAT	М		64Kbps	AMHS		
DOHA	Т		128Kbps	AMHS		
TEHRAN	М		9.6Kbps	None	IA-5	
JEDDAH	Т	SAT	64Kbps	AMHS		
YEMEN						
SANA'A						
JEDDAH	Т		9.6Kbps	None	IA-5	
MUSCAT	T		100Kbps	None	IA-5	

_

TABLE CNS II-2 - REQUIRED ATN INFRASTRUCTURE ROUTING PLAN

EXPLANATION OF THE TABLE

Column

- 1 Name of the Administration and Location of the ATN Router
- 2 Type of Router (in end systems (ES) of the Administration shown in column 1)
- 3 Type of Interconnection: Inter Regional: Connection between different Regions/ domains Intra Regional: Connection within a Region/ domain.
- 4 Connected Router: List of the Administration and location of the ATN routers to be connected with the router shown in column 1.
- 5 Bandwidth: Link Speed expressed in bits per second (bps)
- 6 Network Protocol: If Internet Protocol Suite is used, indicate version of IP (IPv4 or IPv6)
- 7 Via: The media used to implement the interconnection of the routers. (in case of IP service bought from a service provider, indicate VPN)
- 8 Remarks

Administration and Location	Type of Router	Type of Interconnection	Connected Router	Bandwidth	Network Protocol	Via	Remarks
1	2	3	4	5	6	7	8
BAHRAIN, Bahrain	BIS	Inter-Regional	ASIA/PAC Oman, Saudi Arabia Kuwait, Lebanon		IPv4		
		Intra Regional	Iran, Qatar, UAE				
EGYPT, Cairo	BIS	Inter-Regional	AFI, EUR Israel, Jordan,		IPv4		
		Intra Regional	Lebanon, Athena Saudi Arabia				
IRAN, Tehran	BIS	Intra Regional	ASIA/PAC Kuwait, Bahrain Afganistan		IPv4		
IRAQ, Baghdad	IS	Intra Regional	Jordan, Lebanon		IPv4		
JORDAN, Amman	BIS	Intra Regional	Egypt,Israel Lebanon,Iraq,Syria		IPv4 VPN	JT	
KUWAIT,Kuwait	BIS	Inter-Regional	EUR, Pakistan,		IPv4		
	210	Intra Regional	Iran,Qatar,Bahrain, Lebanon				
LEBANON, Beirut	BIS	Inter-Regional	EUR Jordan,Syria Iraq,Kuwait,Bahrain		IPv4		
		Intra Regional	Saudi Arabia,Egypt				
LIBYA	IS	Intra Regional			IPv4		
OMAN, Muscat	BIS	Inter-Regional	ASIA/PAC Yemen, Bahrain,		IPv4		
		Intra Regional	UAE, Saudi Arabia		VPN	OT	
QATAR, Doha	IS	Intra Regional	Kuwait, Bahrain Abu Dhabi		IPv4		
SAUDI ARABIA, Jeddah	BIS	Inter-Regional	AFI Egypt, Lebanon Bahrain,Oman		IPv4		
		Intra Regional	Yemen				
SUDAN	IS	Intra Regional			IPv4		
SYRIA, Damascus	IS	Intra Regional	Jordan, Lebanon		IPv4 VPN		
U.A.E, Abu Dhabi	BIS	Intra Regional	Bahrain, Oman Qatar		IPv4 VPN		
YEMEN, Sana'a	IS	Intra Regional	Oman, Saudi Arabia		IPv4	YT	

TABLE CNS II-3 - ATS DIRECT SPEECH CIRCUITS PLAN

EXPLANATION OF THE TABLE

Column

- 1 and 2 Circuit terminal stations are listed alphabetically by the Terminal I.
 - A indicates ATS requirement for the establishment of voice communication within 15 3 seconds.
 - D indicates requirements for instantaneous communications.
 - 4 Type of service specified:
 - LTF landline telephone (landline, cable, UHF, VHF, satellite). RTF radiotelephone.
 - Type of circuits; Direct (DIR) or Switched (SW). 5

D — indicates a direct circuit connecting Terminals I and II. S — indicates that a direct circuit does not exist and that the connection is established via switching at the switching centre(s) indicated in column 6.

- IDD International direct dialling by public switch telephone network
- Note 1.— Number of D and/or S circuits between Terminals I and II are indicated by numerical prefix, i.e. 2 D/S means 2 direct circuits and one switched circuit.
- Note 2.— Pending the implementation of proper ATS voice circuits, and provided that aeronautical operational requirements are met, IDD services may be used for the ATS voice communications in low traffic areas.
- Location of switching centre(s). Alternate routing location, if available, is indicated in 6 brackets.
- 7 Remarks

ATS REQUIREMEN COMMUNI		I		Г		
TERMINAL I	TERMINAL II	ТҮРЕ	SERVICE	DIR/SW	TO BE SWITCHED VIA	REMARKS
1	2	3	4	5	6	7
BAHRAIN						
Bahrain	Emirates ACC Dammam Doha Jeddah Kuwait Riyadh Tehran	A A A A A A	LTF LTF LTF LTF LTF LTF LTF	DIR DIR DIR DIR DIR DIR DIR		4 LINES 2 LINES 4 LINES 2 LINES 1 LINES 1 LINES 1 LINES
ЕБҮРТ						
Cairo	Amman Athens Jeddah Khartoum Nicosia Tel Aviv Tripoli	A A A A A A	LTF LTF LTF LTF LTF LTF LTF	DIR DIR DIR DIR DIR DIR		1LINE 2LINES 2LINES 1LINE 1LINE 1LINE 1LINE

ATS REQUIREMENTS FOR SPEECH COMMUNICATIONS				CIRCUI	Г	
TERMINAL I	TERMINAL II	ТҮРЕ	SERVICE	DIR/SW	TO BE SWITCHED VIA	REMARKS
1	2	3	4	5	6	7
IRAN (ISLAMIC REPUBLIC OF)						
Abadan	Basrah Shiraz	A A	LTF LTF	DIR		
Shiraz	Abadan Basrah Doha Karachi Kuwait Tehran	A A A A A A	LTF LTF LTF LTF LTF LTF LTF	DIR DIR DIR DIR DIR DIR		
Tehran	Emirates ACC Ankara Ashgabat Baghdad Bahrain Baku Basrah Doha Kabul Karachi Kuwait Muscat Shiraz	A A A A A A A A A A A	LTF LTF LTF LTF LTF LTF LTF LTF LTF LTF	DIR DIR DIR DIR DIR DIR DIR DIR DIR DIR		11
ID 4 O	Yerevan/Zvartn ots	A	LTF	DIR		
IRAQ						
Baghdad	Amman Ankara Basrah Damascus Jeddah Kuwait Mosul Tehran	A A A A A A A	LTF SAT LTF LTF LTF LTF LTF			
Basrah	Abadan Baghdad Kuwait Shiraz Tehran	A A A A	LTF LTF LTF LTF LTF			
Mosul	Baghdad	А	LTF			

	ENTS FOR SPEECH	I		CIRCUI	Г	
TERMINAL I	TERMINAL II	TYPE	SERVICE	DIR/SW	TO BE SWITCHED VIA	REMARKS
1	2	3	4	5	6	7
JORDAN						
Amman	Baghdad Cairo Damascus Jeddah Tel Aviv	A A A A	LTF LTF LTF LTF LTF			
KUWAIT	Baghdad	А	LTF			
Kuwait	Bahrain Basrah Jeddah Shiraz Tehran	A A A A A	LTF LTF LTF LTF LTF	DIR DIR DIR DIR		
LEBANON						
Beirut	Ankara Damascus Nicosia	A A A	LTF LTF LTF	DIR DIR DIR		
LIBYA Tripoli	Cairo Malta Khartoum					
OMAN						
Muscat	Emirates ACC Mumbai Jeddah Karachi Salalah Sana'a Tehran	A A A A A A	LTF LTF LTF LTF LTF LTF LTF	DIR DIR DIR DIR DIR DIR DIR		
Salalah	Muscat	А	LTF			

	ENTS FOR SPEECH NICATIONS	I		CIRCUI	Г	
TERMINAL I	TERMINAL II	TYPE	SERVICE	SERVICE DIR/SW TO BE SWITCHED VIA		REMARKS
1	2	3	4	5	6	7
QATAR						
Doha	Emirates ACC Bahrain Jeddah Riyadh Dammam	A A A A A	LTF LTF LTF LTF	DIR DIR DIR DIR	Via Bahrain	1I + 1
SAUDI ARABIA						
Dammam	Bahrain Jeddah Riyadh	A A A	LTF LTF LTF	DIR DIR DIR		
Jeddah	Addis Ababa Amman Asmara Baghdad Bahrain Cairo Dammam Khartoum Kuwait Muscat Riyadh Sana'a	A A A A A A A A A A A	LTF LTF LTF LTF LTF LTF LTF LTF LTF LTF	DIR DIR DIR DIR DIR DIR SW	Via Bahrain	
Riyadh	Bahrain Jeddah Dammam	A A A	LTF LTF LTF	DIR DIR DIR		
SUDAN						
Khartoum	Cairo Jeddah	A A	LTF LTF			
SYRIAN ARAB REPUBLIC						
Damascus	Amman	А	LTF			

ATS REQUIREMENTS FOR SPEECH COMMUNICATIONS						
TERMINAL I	TERMINAL II	ТҮРЕ	SERVICE	DIR/SW	TO BE SWITCHED VIA	REMARKS
1	2	3	4	5	6	7
	Ankara Baghdad Beirut Nicosia	A A A A	LTF LTF LTF LTF	DIR		
UNITED ARAB EMIRATES						
Emirates ACC	Abu Dhabi Al Ain Bahrain Doha Dubai Muscat Tehran	A A A A A A	LTF LTF LTF LTF LTF LTF LTF	DIR SW DIR DIR DIR DIR DIR		21
Abu Dhabi	Emirates ACC Al Ain Dubai	A A A	LTF LTF LTF	SW DIR SW		21 21 21
Al Ain	Emirates ACC Abu Dhabi Dubai	A A A	LTF LTF LTF	SW DIR SW		21 21 21
Dubai	Emirates ACC Abu Dhabi Al Ain Fujairah Ras Al KhaimahSharja h Sharjah	A A A A A	LTF LTF LTF LTF LTF LTF	DIR DIR SW DIR DIR DIR		2I + 1 2I 1I 1I 1I 3I
Fujairah	Ras Al Khaimah Emirates ACC	A A	LTF LTF	DIR DIR		1I 1I
Ras Al Khaimah	Dubai	А	LTF	DIR		11
Sharjah	Dubai	А	LTF	DIR		31
YEMEN						

ATS REQUIREMENTS FOR SPEECH COMMUNICATIONS						
TERMINAL I	TERMINAL II	ТҮРЕ	SERVICE	DIR/SW	TO BE switched VIA	REMARKS
1	2	3	4	5	6	7
Aden	Djibouti Sana'a	A A	LTF LTF			
Mukalla	Aden Sana'a	A A	LTF LTF			
Sana'a	Aden Addis Ababa Asmara Mumbai Djibouti Jeddah Mogadishu Muscat Riyan	A A A A A A A A	LTF LTF LTF LTF LTF LTF LTF LTF LTF	DIR	Via Bahrain	

TABLE CNS II-4 - HF NETWORK DESIGNATORSEXPLANATION OF THE TABLE

Column

- 1 Name of station, preceded by its location indicator.
- 2 Network designators assigned to the facility providing HF radiotelephony en-route communications (selected from the provisions of the allotment plan in Appendix S27 to the ITU Radio Regulations).

NOTES

The ICAO designators for HF MWARA and VOLMET networks in the MID region are derived from the ITU allotment area abbreviations as contained in Appendix S27 to the ITU Radio Regulations. ITU allotment area:

Two- and three-letter alpha entries indicate major world air route areas (MWARA): Four-letter alpha entries indicate VOLMET areas:

Location Indicator and Name of location	HF en-route family
1	2
Aden	MID-1, AFI-3
Cairo	AFI-3
Jeddah	AFI-3
Khartoum	AFI-3
Riyan	MID-1, AFI-3
Sanaa	MID-1, AFI-3
Shiraz	MID-1, MID-2
Tehran	MID-1, MID-2
Tripoli	AFI-3

HF FREQUENCIES AND THEIR ICAO NETWORK DESIGNATORS BASED ON ITU APPENDIX S27 ALLOTMENT AREAS

Frequency	ITU allotment	AFI-3	MID-1	MID-2	MID-3	V MID	Remarks
(kHz)	area						
1	2	3	4	5	6	7	8
2944	MID				X		
2956	V MID					Х	
2992	MID		X				
3467	MID, AFI	Х		X			
3473	MID (1)						
4669	MID				Х		
5517	AFI	Х					
5589	V MID					Х	
5658	MID, AFI	Х		X			
5667	MID		X				
6625	MID (1)						
6631	MID			X			
8918	MID		X				
8945	V MID					Х	
8951	MID				Х		
10018	MID			X			
11300	AFI	Х					
11375	MID				Х		
11393	V MID (2)					Х	
13288	MID, AFI	Х		Х			
13312	MID		X				
17961	AFI, MID	Х			Х		

APPENDIX B

MID AIR NAVIGATION PLAN

VOLUME III

MID AIR NAVIGATION PLAN

VOLUME III

TABLE OF CONTENTS

PART 0 — Introduction	0-1
PART I — General Planning Aspects (GEN)	I-1
Table GEN III-1 – Implementation Indicator(s) for each ASBU Block 0 Module	
Appendix A – Sample Template for Air Navigation Report Form (ANRF)	
Appendix B – Main Planning Table Template	
PART II — Air Navigation System Implementation	II-1
Appendix – ASBU Block 0 Modules applicable in the MID Region	

MID ANP, VOLUME III PART 0 – INTRODUCTION

1. INTRODUCTION

1.1 The background to the publication of ANPs in three volumes is explained in the Introduction in Volume I. The procedure for amendment of Volume III is also described in Volume I. Volume III contains dynamic/flexible plan elements related to the implementation of the air navigation system and its modernization in line with the ICAO Aviation System Block Upgrades (ASBUs) and associated technology roadmaps described in the Global Air Navigation Plan (GANP).

1.2 The information contained in Volume III is related mainly to:

- <u>Planning</u>: objectives set, priorities and targets planned at regional or sub-regional levels;
- <u>Implementation monitoring and reporting</u>: monitoring of the progress of implementation towards targets planned. This information should be used as the basis for reporting purposes (i.e.: global and regional air navigation reports and performance dashboards); and/or
- <u>Guidance</u>: providing regional guidance material for the implementation of specific system/procedures in a harmonized manner.
- 1.3 The management of Volume III is the responsibility of the MIDANPIRG.

1.4 Volume III should be used as a tool for monitoring and reporting the status of implementation of the elements planned here above, through the use of tables/databases and/or references to online monitoring tools, as endorsed by MIDANPIRG. The status of implementation is updated on a regular basis as endorsed by MIDANPIRG.

2. AVIATION SYSTEM BLOCK UPGRADES (ASBUS), MODULES AND ROADMAPS

2.1. The ASBU Modules and Roadmaps form a key component to the GANP, noting that they will continue to evolve as more work is done on refining and updating their content and in subsequent development of related provisions, support material and training.

2.2. Although the GANP has a worldwide perspective, it is not intended that all Block Upgrade Modules are required to be applied in every State, sub-region and/or region. Many of the Block Upgrade Modules contained in the GANP are specialized packages that should be applied only where the specific operational requirement exists or corresponding benefits can be realistically projected. Accordingly, the Block Upgrade methodology establishes an important flexibility in the implementation of its various Modules depending on a region, sub-region and/or State's specific operational requirements. Guided by the GANP, ICAO MID regional, sub-regional and State planning should identify Modules which best provide the needed operational improvements.

MID ANP, VOLUME III

PART I - GENERAL PLANNING ASPECTS (GEN)

1. PLANNING METHODOLOGY

1.1 Guided by the GANP, the regional planning process starts by identifying the homogeneous ATM areas, major traffic flows and international aerodromes. An analysis of this data leads to the identification of opportunities for performance improvement. Modules from the Aviation System Block Upgrades (ASBUs) are evaluated to identify which of those modules best provide the needed operational improvements. Depending on the complexity of the module, additional planning steps may need to be undertaken including financing and training needs. Finally, regional plans would be developed for the deployment of modules by drawing on supporting technology requirements. This is an iterative planning process which may require repeating several steps until a final plan with specific regional targets is in place. This planning methodology requires full involvement of States, service providers, airspace users and other stakeholders, thus ensuring commitment by all for implementation.

1.2 Block 0 features Modules characterized by technologies and capabilities which have already been developed and implemented in many parts of the world today. It therefore features a near-term availability milestone, or Initial Operating Capability (IOC), of 2013 for high density based on regional, sub-regional and State operational need. Blocks 1 through 3 are characterized by both existing and projected performance area solutions, with availability milestones beginning in 2018, 2023 and 2028 respectively.

2. REVIEW AND EVALUATION OF AIR NAVIGATION PLANNING

2.1. The progress and effectiveness against the priorities set out in the regional air navigation plans should be annually reported, using a consistent reporting format, to ICAO.

2.2. Performance monitoring requires a measurement strategy. Data collection, processing, storage and reporting activities supporting the identified global/regional performance metrics are fundamental to the success of performance-based approaches.

2.3. The air navigation planning and implementation performance framework prescribes reporting, monitoring, analysis and review activities being conducted on a cyclical, annual basis. An Air Navigation Reporting Form (ANRF) reflecting selected key performance areas as defined in the Manual on Global Performance of the Air Navigation System (ICAO Doc 9883) has been developed for each ASBU Module. The ANRF is a customized tool which is recommended for the application of setting planning targets, monitoring implementation, and identifying challenges, measuring implementation/performance and reporting. If necessary, other reporting formats that provide more details may be used but should contain as a minimum the elements described in the ANRF template. A sample of the ANRF is provided in **Appendix A**. A sample Template of a planning table which may be used to show the elements planned in an ICAO region is provided in **Appendix B**.

3. **REPORTING AND MONITORING RESULTS**

3.1 Reporting and monitoring results will be analyzed by the PIRGs, States and ICAO Secretariat to steer the air navigation improvements, take corrective actions and review the allocated objectives, priorities and targets if needed. The results will also be used by ICAO and aviation partner stakeholders to develop the annual Global Air Navigation Report. The report results will provide an opportunity for the international civil aviation community to compare progress across different ICAO regions in the establishment of air navigation infrastructure and performance-based procedures.

3.2 The reports will also provide the ICAO Council with detailed annual results on the basis of which tactical adjustments will be made to the performance framework work programme, as well as triennial policy adjustments to the GANP and the Block Upgrade Modules.

3.3 **Table GEN III-1** contains a minimum set of Implementation Indicator(s) for each of the eighteen ASBU Block 0 Modules necessary for the monitoring of these Modules (if identified as a priority for implementation at regional or sub-regional level). These indicators are intended to enable comparison between ICAO Regions with respect to ASBU Block 0 Modules and will apply only to commonly selected ASBU Modules. All regions/PIRGs reserve the right to select the ASBU Modules relevant to their needs and to endorse additional indicators, as deemed necessary. No reporting is required for ASBU Block 0 Modules that have not been selected.

Note: The priority for implementation as well as the applicability area of each selected ASBU Block 0 Module is to be defined by the MIDANPIRG.

TABLE GEN III-1 – IMPLEMENTATION INDICATOR(S) FOR EACH ASBU BLOCK 0 MODULE

Explanation of the Table

- 1 Block 0 Module Code
- 2 Block 0 Module Title
- 3 Implementation Indicator
- 4 Remarks

Module Code	Module Title	Implementation Indicator	Remarks
1	2	3	4
B0- APTA	OptimizationofApproachProceduresincludingverticalguidance	% of international aerodromes having at least one runway end provided with APV Baro-VNAV or LPV procedures	
B0- WAKE	Increased Runway Throughput through Optimized Wake Turbulence Separation	% of applicable international aerodromes having implemented increased runway throughput through optimized wake turbulence separation	 Not to be considered for the first reporting cycles due to lack of maturity. List of ADs to be established through regional air navigation agreement.
B0- RSEQ	Improve Traffic flow through Runway Sequencing (AMAN/DMAN)	% of applicable international aerodromes having implemented AMAN / DMAN	 Not to be considered for the first reporting cycles due to lack of maturity. List of ADs to be established through regional air navigation agreement.
B0- SURF	Safety and Efficiency of Surface Operations (A- SMGCS Level 1-2)	% of applicable international aerodromes having implemented A- SMGCS Level 2	List of ADs to be established through regional air navigation agreement.
B0- ACDM	ImprovedAirportOperationsthroughAirport-CDM	% of applicable international aerodromes having implemented improved airport operations through airport-CDM	List of ADs to be established through regional air navigation agreement.
B0-FICE	Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration	% of FIRs within which all applicable ACCs have implemented at least one interface to use AIDC / OLDI with neighbouring ACCs	
B0- DATM	Service Improvement through Digital Aeronautical Information Management	 % of States having implemented an AIXM based AIS database % of States having implemented QMS 	
B0- AMET	Meteorological information supporting enhanced operational efficiency and safety	 % of States having implemented SADIS / WIFS % of States having implemented QMS 	

Module Code	Module Title	Implementation Indicator	Remarks
1	2	3	4
B0- FRTO	Improved Operations through Enhanced En- Route Trajectories	% of FIRs in which FUA is implemented	
B0- NOPS	ImprovedFlowPerformancethroughPlanningbasedonNetwork-Wideview	% of FIRs within which all ACCs utilize ATFM systems	
B0- ASUR	Initial capability for ground surveillance	% of FIRs where ADS-B OUT and/or MLAT are implemented for the provision of surveillance services in identified areas.	Not to be considered for the first reporting cycles due to lack of maturity.
B0- ASEP	Air Traffic Situational Awareness (ATSA)	% of States having implemented air traffic situational awareness	Not to be considered for the first reporting cycles due to lack of maturity.
B0- OPFL	Improved access to optimum flight levels through climb/descent procedures using ADS- B	% of FIRs having implemented in-trail procedures	Not to be considered for the first reporting cycles due to lack of maturity.
B0- ACAS	ACAS Improvements	% of States requiring carriage of ACAS (with TCAS 7.1 evolution)	
B0- SNET	Increased Effectiveness of Ground-Based Safety Nets	% of States having implemented ground-based safety-nets (STCA, APW, MSAW, etc.)	
B0-CDO	Improved Flexibility and Efficiency in Descent Profiles (CDO)	- % of international aerodromes / TMAs with PBN STAR implemented - % of international aerodromes/TMA where CDO is implemented	
B0-TBO	Improved Safety and Efficiency through the initial application of Data Link En-Route	% of FIRs utilising data link en-route in applicable airspace	
B0-CCO	ImprovedFlexibilityandEfficiencyDepartureProfilesContinuousClimbOperations (CCO)	 % of international aerodromes / TMAs with PBN SID implemented % of international aerodromes/TMA where CCO is implemented 	

Appendix A

SAMPLE TEMPLATE

1. AIR NAVIGATION REPORT FORM (ANRF)

(This template demonstrates how ANRF to be used. The data inserted here refers to ASBU B0-05/CDO as an example only)

Regional and National planning for ASBU Modules

2. REGIONAL/NATIONAL PERFORMANCE OBJECTIVE – B0-05/CDO: Improved Flexibility and Efficiency in Descent Profiles

Performance Improvement Area 4: Efficient Flight Path – Through Trajectory-based Operations

3. ASBU B0-05/CDO: Impact on Main Key Performance Areas (KPA)

	Access & Equity	Capacity	Efficiency	Environment	Safety
Applicable	N	N	Y	Y	Y

4. ASBU B0-05/CDO: Planning Targets and Implementation Progress

5. Elements	6. Targets and implementation progress (Ground and Air)
1. CDO	
2. PBN STARs	

7. ASBU B0-05/CDO: Implementation Challenges

	Implementation Area					
Elements	Ground system Implementation	Avionics Implementation	Procedures Availability	Operational Approvals		
1. CDO						
2. PBN STARs						

8. Performance Monitoring and Measurement 8A. ASBU B0-05/CDO: Implementation Monitoring

Elements	Performance Indicators/Supporting Metrics
1. CDO	Indicator: Percentage of international aerodromes/TMAs with CDO implemented Supporting metric: Number of international aerodromes/TMAs with CDO implemented
2. PBN STARs	Indicator: Percentage of international aerodromes/TMAs with PBN STARs implemented Supporting metric: Number of international aerodromes/TMAs with PBN STARs implemented

Key Performance Areas	0-05/CDO: Performance Monitoring Where applicable, indicate qualitative Benefits,
(Out of eleven KPAs, for the present until experienced gained, only five have	where applicable, indicate quantative benefits,
been selected for reporting through ANRF)	
Access & Equity	Not applicable
Capacity	Not applicable
Efficiency	Cost savings through reduced fuel burn. Reduction in the number of required radio transmissions.
Environment	Reduced emissions as a result of reduced fuel burn
Safety	More consistent flight paths and stabilized approach paths. Reduction in the incidence of controlled flight into terrain (CFIT).

five KPAs. Consequently, a limited number of metrics per type of KPA, serving as an example to measure the module(s)' implementation benefits, without trying to apportion these benefits between module, have been identified on page 5. For the family of ASBU modules selected for air navigation implementation, States/Region to choose the applicable performance (benefit) metrics from the list available on page 5. This approach would facilitate States in collecting data for the chosen performance metrics. States/Region, however, could add new metrics for different KPAs based on maturity of the system and ability to collect relevant data.

AIR NAVIGATION REPORT FORM HOW TO USE - EXPLANATORY NOTES

- 1. **Air Navigation Report Form (ANRF):** This form is nothing but the revised version of Performance Framework Form that was being used by Planning and Implementation Regional Groups (PIRGs)/States until now. The ANRF is a customized tool for Aviation System Block Upgrades (ASBU) Modules which is recommended for application for setting planning targets, monitoring implementation, identifying challenges, measuring implementation/performance and reporting. Also, the PIRGs and States could use this report format for any other air navigation improvement programmes such as Search and Rescue. If necessary, other reporting formats that provide more details may be used but should contain as a minimum the elements described in this ANRF template. The results will be analysed by ICAO and aviation partners and utilized in the Regional Performance Dashboards and the Annual Air Navigation Report. The conclusions from the Air Navigation Report will serve as the basis for future policy adjustments, aiding safety practicality, affordability and global harmonization, amongst other concerns.
- 2. **Regional/National Performance objective:** In the ASBU methodology, the performance objective will be the title of the ASBU module itself. Furthermore, indicate alongside corresponding Performance Improvement area (PIA).
- 3. **Impact on Main Key Performance Areas:** Key to the achievement of a globally interoperable ATM system is a clear statement of the expectations/benefits to the ATM community. The expectations/benefits are referred to eleven Key Performance Areas (KPAs) and are interrelated and cannot be considered in isolation since all are necessary for the achievement of the objectives established for the system as a whole. It should be noted that while safety is the highest priority, the eleven KPAs shown below are in alphabetical order as they would appear in English. They are access/equity; capacity; cost effectiveness; efficiency; environment; flexibility; global interoperability; participation of ATM community; predictability; safety; and security. However, out of these eleven KPAs, for the present, only five have been selected for reporting through ANRF, which are Access & Equity, Capacity, Efficiency, Environment and Safety. The KPAs applicable to respective ASBU module are to be identified by marking Y (Yes) or N (No). The impact assessment could be extended to more than five KPAs mentioned above if maturity of the national system allows and the process is available within the State to collect the data.
- 4. **Planning Targets and Implementation Progress:** This section indicates planning targets and status of progress in the implementation of different elements of the ASBU Module for both air and ground segments.
- 5. Elements related to ASBU module: Under this section list elements that are needed to implement the respective ASBU Module. Furthermore, should there be elements that are not reflected in the ASBU Module (example: In ASBU B0-80/ACDM, Aerodrome certification and data link applications D-VOLMET, D-ATIS, D-FIS are not included; Similarly in ASBU B0-30/DAIM, note that WGS-84 and eTOD are not included) but at the same time if they are closely linked to the module, ANRF should specify those elements. As a part of guidance to PIRGs/States, every Regional ANP will have the complete list of all 18 Modules of ASBU Block 0 along with corresponding elements, equipage required on the ground and in the air as well as metrics specific to both implementation and performance (benefits).
- 6. **Targets and implementation progress (Ground and Air):** Planned implementation date (month/year) and the current status/responsibility for each element are to be reported in this section. Please provide as much details as possible and should cover both avionics and ground systems. This ANRF being high level document, develop necessary detailed action plan separately for each element/equipage.

- 7. **Implementation challenges**: Any challenges/problems that are foreseen for the implementation of elements of the Module are to be reported in this section. The purpose of the section is to identify in advance any issues that will delay the implementation and if so, corrective action is to be initiated by the concerned person/entity. The four areas, under which implementation issues, if any, for the ASBU Module to be identified, are as follows:
 - Ground System Implementation:
 - Avionics Implementation:
 - Procedures Availability:
 - Operational Approvals:

Should be there no challenges to be resolved for the implementation of ASBU Module, indicate as "NIL".

- 8. **Performance Monitoring and Measurement:** Performance monitoring and measurement is done through the collection of data for the supporting metrics. In other words, metrics are quantitative measure of system performance how well the system is functioning. The metrics fulfil three functions. They form a basis for assessing and monitoring the provision of ATM services, they define what ATM services user value and they can provide common criteria for cost benefit analysis for air navigation systems development. The Metrics are of two types:
 - A. **Implementation Monitoring**: Under this section, the indicator supported by the data collected for the metric reflects the status of implementation of elements of the Module. For example-Percentage of international aerodromes with CDO implemented. This indicator requires data for the metric "number of international aerodromes with CDO".
 - B. **Performance Monitoring**: The metric in this section allows to asses benefits accrued as a result of implementation of the module. The benefits or expectations, also known as Key Performance Areas (KPAs), are interrelated and cannot be considered in isolation since all are necessary for the achievement of the objectives established for the system as a whole. It should be noted that while safety is the highest priority, the eleven KPAs shown below are in alphabetical order as they would appear in English. They are access/equity; capacity; cost effectiveness; efficiency; environment; flexibility; global interoperability; participation of ATM community; predictability; safety; and security. However, out of these eleven KPAs, for the present until experienced gained, only five have been selected for reporting through ANRF, which are Access & Equity, Capacity, Efficiency, Environment and Safety. Where applicable, mention qualitative benefits under this section.
- 9. **Identification of performance metrics:** It is not necessary that every module contributes to all of the five KPAs. Consequently, a limited number of metrics per type of KPA, serving as an example to measure the module(s)' implementation benefits, without trying to apportion these benefits between module, have been identified on page 6. For the family of ASBU modules selected for air navigation implementation, States/Region to choose the applicable performance (benefit) metrics from the list available on page 6. This approach would facilitate States in collecting data for the chosen performance metrics. States/Region, however, could add new metrics for different KPAs based on maturity of the system and ability to collect relevant data.

Appendix B - Main Planning Table Template

			Objectiv	ves			Priorities and targ	ets	Reference
Block	ASBU modules and elements Enablers	Performance Improvement Area	Applicable or not in [Region] (Yes/No)	Regional planning elements	Enablers	Priority allocated in [Reg.	Target(s) in [Region]	Indicator(s) / Metric(s)	Supporting Planning Document (ANRF, other)
			Ô						

MID ANP, VOLUME III

PART II – AIR NAVIGATION SYSTEM IMPLEMENTATION

1. INTRODUCTION

1.1 The planning and implementation of the ICAO Aviation System Block Upgrades (ASBUs) should be undertaken within the framework of the MIDANPIRG with the participation and support of all stakeholders, including regulatory personnel.

1.2 The ASBU Blocks and Modules adopted by the MID Region should be followed in accordance with the specific ASBU requirements to ensure global interoperability and harmonization of air traffic management. The MIDANPIRG should determine the ASBU Block Upgrade Modules, which best provide the needed operational improvements in the ICAO MID Region.

2. ICAO MID REGION AIR NAVIGATION OBJECTIVES, PRIORITIES AND TARGETS

2.1 In accordance with Recommendation 6/1 of the Twelfth Air Navigation Conference (AN-Conf/12), PIRGs are requested to establish priorities and targets for air navigation, in line with the ASBU methodology.

2.2 The achievement of the intended benefits along each routing or within each area of affinity is entirely dependent on the coordinated implementation of the required elements by all provider and user stakeholders concerned.

2.3 Considering that some of the block upgrade modules contained in the GANP are specialized packages that may be applied where specific operational requirements or corresponding benefits exist, States and PIRGs should clarify how each Block Upgrade module would fit into the national and regional plans.

2.4 As Block 0 modules in many cases provide the foundation for future development, all Block 0 modules should be assessed, as appropriate, for early implementation by States in accordance with their operational needs.

2.5 In establishing and updating the MID air navigation plan, the MIDANPIRG and States should give due consideration to the safety priorities set out in the Global Aviation Safety Plan (GASP) and MID Region safety strategy.

2.6 States in the MID Region through the MIDANPIRG should establish their own air navigation objectives, priorities and targets to meet their individual needs and circumstances in line with the global and regional air navigation objectives, priorities and targets.

3. MONITORING OF ASBU MODULES IMPLEMENTATION

3.1 The monitoring of air navigation performance and its enhancement should be carried out through identification of relevant air navigation Metrics and Indicators as well as the adoption and attainment of air navigation system Targets.

3.2 The monitoring of the regional implementation progress and performance metrics/indicators should be done for all elements planned by MIDANPIRG. The monitoring should allow global correlation of status and expectations, appreciation of benefits achieved for the airspace users, as well as corrective actions to be taken by the PIRG on implementation plans.

3.3 The MIDANPIRG should determine appropriate mechanisms and tools for the monitoring and the collection of necessary data at national and regional levels.

MID Region ASBU Block 0 Modules Prioritization and Monitoring

3.4 On the basis of operational requirements and taking into consideration the associated benefits, MID Region has prioritized the implementation of the Block "0" Modules, also agreed on the subsidiary bodies that will be monitoring and supporting the implementation of the modules as in Table below:

Module		Priorit	Mo	nitoring	Remarks
Code	Module Title	У	Main	Supporting	
Performance Im	provement Areas (PIA) 1: Air	port Oper	ations		
B0-APTA	Optimization of Approach Procedures including vertical guidance	1	PBN SG	ATM SG, AIM SG, CNS SG	
B0-WAKE	IncreasedRunwayThroughputthroughOptimizedWakeTurbulence Separation	2			
B0-RSEQ	Improve Traffic flow through Runway Sequencing (AMAN/DMAN)	2			
B0-SURF	Safety and Efficiency of Surface Operations (A- SMGCS Level 1-2)	1	ANSIG	CNS SG	Coordination with RGS WG
B0-ACDM	ImprovedAirportOperationsthroughAirport-CDM	1	ANSIG	CNS SG, AIM SG, ATM SG	Coordination with RGS WG
	<i>provement Areas (PIA) 2</i> Glob System Wide Information Man		operable Syst	ems and Data Th	rough Globally
B0-FICE	Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration	agement 1	CNS SG	ATM SG	
B0-DATM	Service Improvement through Digital Aeronautical Information Management	1	AIM SG	-	
B0-AMET	Meteorological information supporting enhanced operational efficiency and safety	1	MET SG	-	
<i>Performance In</i> Collaborative A	aprovement Areas (PIA) 3 Opti	mum Capa	acity and Flex	ible Flights – Thr	ough Global
B0-FRTO	Improved Operations through Enhanced En- Route Trajectories	1	ATM SG		

MID REGION ASBU BLOCK 0 MODULES PRIORITIZATION AND MONITORING

B0-NOPS	Improved Flow Performance through Planning based on a Network-Wide view	1	ATM SG	AIM SG, CNS SG	
B0-ASUR	Initial capability for ground surveillance	2			
B0-ASEP	Air Traffic Situational Awareness (ATSA)	2			
B0-OPFL	Improved access to optimum flight levels through climb/descent procedures using ADS-B	2			
B0-ACAS	ACAS Improvements	1	CNS SG		
B0-SNET	Increased Effectiveness of Ground-Based Safety Nets	2			
<i>Performance</i> Operations	Improvement Areas (PIA)) 4 Effici	ient Flight l	Path – Throug	h Trajectory-based
B0-CDO	Improved Flexibility and Efficiency in Descent Profiles (CDO)	1	PBN SG		
B0-TBO	Improved Safety and Efficiency through the initial application of Data Link En-Route	2			
B0-CCO	Improved Flexibility and Efficiency Departure Profiles - Continuous Climb Operations (CCO)	1	PBN SG		

Note:

Priority 1: Modules that have the highest contribution to the improvement of air navigation safety and/or efficiency in the MID Region. These modules should be implemented where applicable and will be used for the purpose of regional air navigation monitoring and reporting for the period 2013-2014.

Priority 2: Modules recommended for implementation based on identified operational needs and benefits.

APPENDIX - ASBU BLOCK 0 MODULES APPLICABLE IN THE MID REGION

B0 – APTA: Optimization of Approach Procedures including vertical guidance

Description and purpose

The use of performance-based navigation (PBN) and ground-based augmentation system (GBAS) landing system (GLS) procedures will enhance the reliability and predictability of approaches to runways, thus increasing safety, accessibility and efficiency. This is possible through the application of Basic global navigation satellite system (GNSS), Baro vertical navigation (VNAV), satellite-based augmentation system (SBAS) and GLS. The flexibility inherent in PBN approach design can be exploited to increase runway capacity.

Main performance impact:

KPA- 01 - Access and	КРА-02 –	КРА-04 –	KPA-05 –	KPA-10 –
Equity	Capacity	Efficiency	Environment	Safety
Y	Y	Y	Y	Y

Applicability consideration:

This module is applicable to all instrument, and precision instrument runway ends, and to a limited extent, non-instrument runway ends.

B0 – APTA: Optin	B0 – APTA: Optimization of Approach Procedures including vertical guidance						
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets				
States'PBNAllImplementationPlans		Indicator: % of States that provided updated PBN implementation Plan	80 % by Dec. 2014				
		Supporting metric: Number of States that provided updated PBN implementation Plan	100% by Dec. 2015				
LNAV	All RWYs Ends at International Aerodromes	Indicator: % of runway ends at international aerodromes with RNAV(GNSS) Approach Procedures (LNAV)	All runway ends at Int'l Aerodromes, either as the primary approach or as a back-up for precision				
		Supporting metric: Number of runway ends at international aerodromes with RNAV (GNSS) Approach Procedures (LNAV)	approaches by Dec. 2016				
LNAV/VNAV	AllRWYsENDsatInternationalAerodromes	Indicator: % of runways ends at international aerodromes provided with Baro-VNAV approach procedures (LNAV/VNAV) Supporting metric: Number of runways ends	All runway ends at Int'l Aerodromes, either as the primary approach or as a back-up for precision approaches by Dec. 2017				
		at international aerodromes provided with Baro-VNAV approach procedures (LNAV/VNAV)	approaches by Dec. 2017				

Description and purpose

To implement continuous climb operations in conjunction with performance-based navigation (PBN) to provide opportunities to optimize throughput, improve flexibility, enable fuel-efficient climb profiles and increase capacity at congested terminal areas.

Main performance impact:

KPA-01 – Access and	КРА-02 –	КРА-04 –	KPA-05 –	KPA-10 –
Equity	Capacity	Efficiency	Environment	Safety
N/A	N/A	Y	Y	Y

Applicability consideration:

Regions, States or individual locations most in need of these improvements. For simplicity and implementation success, complexity can be divided into three tiers:

- least complex: regional/States/locations with some foundational PBN operational experience that a) could capitalize on near-term enhancements, which include integrating procedures and optimizing performance;
- b) more complex: regional/States/locations that may or may not possess PBN experience, but would benefit from introducing new or enhanced procedures. However, many of these locations may have environmental and operational challenges that will add to the complexities of procedure development and implementation; and
- most complex: regional/States/locations in this tier will be the most challenging and complex to c) introduce integrated and optimized PBN operations. Traffic volume and airspace constraints are added complexities that must be confronted. Operational changes to these areas can have a profound effect on the entire State, region or location.

B0 – CCO: Improved Flexibility and Efficiency Departure Profiles - Continuous Climb Operations											
(<i>CCO</i>)											
Elements	Applicability	Performance	Targets								
		Indicators/Supporting Metrics									
PBN SIDs	in accordance with	Indicator: % of International	100% by Dec. 2016 for								
	States'	Aerodromes/TMA with PBN SID	the identified								
	implementation	implemented as required.	Aerodromes/TMAs								
	Plans										
		Supporting Metric: Number of									
		International Aerodromes/ TMAs	100% by Dec. 2018 for								
		with PBN SID implemented as	all the International								
		required.	Aerodromes/TMAs								
International	in accordance with	Indicator: % of International	100% by Dec. 2018 for								
aerodromes/TMAs	States'	Aerodromes/TMA with CCO	the identified								
with CCO	implementation	implemented as required.	Aerodromes/TMAs								
	Plans										
		Supporting Metric: Number of									
		International Aerodromes/TMAs									
		with CCO implemented as									
		required.									

Description and purpose

To use performance-based airspace and arrival procedures allowing aircraft to fly their optimum profile using continuous descent operations (CDOs). This will optimize throughput, allow fuel efficient descent profiles and increase capacity in terminal areas.

Main performance impact:

KPA- 01 - Access and	KPA-02 –	КРА-04 –	KPA-05 –	KPA-10 –
Equity	Capacity	Efficiency	Environment	Safety
Ν	Y	Y	Y	Y

Applicability consideration:

1 1 1 1 1 1 1 1 1

-

Regions, States or individual locations most in need of these improvements. For simplicity and implementation success, complexity can be divided into three tiers:

- a) least complex regional/States/locations with some foundational PBN operational experience that could capitalize on near term enhancements, which include integrating procedures and optimizing performance;
- b) more complex regional/States/locations that may or may not possess PBN experience, but would benefit from introducing new or enhanced procedures. However, many of these locations may have environmental and operational challenges that will add to the complexities of procedure development and implementation; and
- c) most complex regional/States/locations in this tier will be the most challenging and complex to introduce integrated and optimized PBN operations. Traffic volume and airspace constraints are added complexities that must be confronted. Operational changes to these areas can have a profound effect on the entire State, region or location.

Elements	Applicability	Performance Indicators/Supporting Metrics	Targets				
PBN STARs	In accordance with States' implementation Plans		100% by Dec. 2016 for the identified Aerodromes/TMAs				
		Supporting Metric: Number of International Aerodromes/TMAs with PBN STAR implemented as required.	100% by Dec. 2018 for all the International Aerodromes/TMAs				
International aerodromes/TMAs with CDO	In accordance with States' implementation Plans		100% by Dec. 2018 for the identified Aerodromes/TMAs				
		Supporting Metric: Number of International Aerodromes/TMAs with CDO implemented as required.					

TABLE B0-APTA, CCO and CDO

EXPLANATION OF THE TABLE

Column

- 1 Name of the State / International aerodromes' Location Indicator
- 2 Runway Designator
- 3, 4, 5 Conventional Approaches (ILS / VOR or NDB)
- 6, 7, 8 APTA (Status of PBN Plan and implementation of LNAV, LNAV/VNAV), where:
 - Y Yes, implemented
 - N No, not implemented
- 9, 10 CCO (Status of implementation of RNAV SID, CCO), where:
 - Y-Yes, implemented
 - N No, not implemented
- 11, 12 CDO (Status of implementation of RNAV STAR, CDO), where:
 - Y Yes, implemented
 - N No, not implemented
 - 13 Remarks

		Conve	ntional	Approaches		АРТА			ССО		00					
State/Aerodrome Location Indicator	RWY	Precision		Precision		Precision		VOR or NDB	PBN PLAN	LNAV	LNAV /	RNAV SID	ссо	RNAV STAR	CDO	Remarks
		ILS	CAT		Update date		VNAV	510		SIAK						
1	2	3	4	5	6	7	8	9	10	11	12	13				
BAHRAIN																
OBBI	12L	ILS	Ι	VORDME		Y						SIDs and STARs withdrawn				
	30R	ILS	Ι	VORDME		Y						SIDs and STARs withdrawn				
Total	2	2		2	Y	2	0	0	0	0	0					
%		100		100		100	0	0	0	0	0					

		Conve	ntional	Approaches		APTA		CC	0	CI	00	
State/Aerodrome Location Indicator	RWY	Preci	ision	VOR or NDB	PBN PLAN	LNAV	LNAV /	RNAV SID	ссо	RNAV STAR	CDO	Remarks
		ILS	CAT		Update date		VNAV	510		STAK		
1	2	3	4	5	6	7	8	9	10	11	12	13
EGYPT												
HEBA	14											
	32	ILS	Ι			Y		Y				
HESN	17			VORDME		Y		Y		Y		
	35	ILS	Ι	VORDME		Y		Y		Y		
HECA	05L	ILS	Ι	VORDME		Y						
	05C	ILS	Π	VORDME		Y						
	05R	ILS	Ι									
	23L	ILS	Ι	VORDME								
	23C	ILS	Π	VORDME		Y						
	23R	ILS	Ι	VORDME		Y						
HEGN	16			VORDME		Y		Y		Y		
	34	ILS	Ι	VORDME		Y		Y		Y		
HELX	2	ILS	Ι	VORDME		Y		Y		Y		
	20	ILS	Ι	VORDME		Y		Y		Y		
HEMA	15			VORDME								
	33			VORDME								
HESH	04L	ILS	Ι	VORDME		Y		Y		Y		
	04R			VORDME		Y		Y		Y		
	22L			VORDME		Y		Y		Y		
	22R			VORDME		Y		Y		Y		
Total	20	12		17	Y	15	2	11	0	10	0	
%		60		85	Jan.	75	10	55	0	50	0	

		Conve	ntional	Approaches		APTA		CC	0	СІ	00	
State/Aerodrome Location Indicator	RWY	Preci	ision	VOR or NDB	PBN PLAN	LNAV	LNAV /	RNAV SID	ссо	RNAV STAR	CDO	Remarks
		ILS	CAT		Update date		VNAV	512		SIM		
1	2	3	4	5	6	7	8	9	10	11	12	13
					2015							
I.R. IRAN												
OIKB	03L											
	03R			VORDME / NDB								
	21L	ILS	Ι	VORDME / NDB								
	21R											
OIFM	08L			VORDME / NDB								
	08R			VORDME / NDB								
	26L			VORDME / NDB								
	26R	ILS	Ι	VORDME / NDB								
OIMM	13L			VORDME								
	13R			VORDME								
	31L			VORDME / NDB								
	31R	ILS	Ι	VORDME / NDB								
OISS	11L											
	11R											
	29L	ILS	Ι	VORDME / NDB								
	29R			VORDME / NDB								
OITT	12L											

		Conve	ntional	Approaches		APTA		CC	0	CI	00	
State/Aerodrome Location Indicator	RWY	Preci	sion	VOR or NDB	PBN PLAN		LNAV /	RNAV SID	ссо	RNAV STAR	CDO	Remarks
		ILS	CAT		Update date		VNAV	512		Jim		
1	2	3	4	5	6	7	8	9	10	11	12	13
	12R											
	30L	ILS	Ι	VORDME								
	30R	ILS	Ι	VORDME								
OIIE	11L	ILS	Ι	VORDME / NDB								
	11R			VORDME / NDB								
	29L			VORDME								
	29R	ILS	II	VORDME / NDB								
OIII	11L			VORDME								
	11R			VORDME								
	29L	ILS	Ι	VORDME								
	29R											
OIYY	13			VORDME								
	31			VORDME								
OIZH	17											
	35	ILS	Ι	VORDME								
Total	32	10		24	Ν	1	1	0	0	0	0	32
%		31		75		3	3	0	0	0	0	
IRAQ												
ORBI	15L	ILS	Ι	VORDME								
	15R					Y						
	33L					Y						
	33R	ILS	Ι	VORDME								

		Conve	ntional	Approaches		APTA		CC	0	CI	00	_		
State/Aerodrome Location Indicator	RWY	Preci	sion	VOR or NDB	PBN PLAN	LNAV	LNAV /	RNAV SID	ссо	RNAV STAR	CDO	Remarks		
		ILS	CAT		Update date		VNAV	51D				SIAK		
1	2	3	4	5	6	7	8	9	10	11	12	13		
ORMM	14			VORDME										
	32	ILS	Ι	VORDME										
ORER	18	ILS	II			Y				Y				
	36	ILS	Ι			Y				Y				
ORSU	13	ILS	Ι	VOR										
	31	ILS	Ι	VOR										
ORNI	10													
	28	ILS		VOR										
ORBM												NO DATA		
Total	12	8		7	Ν	4	0	0	0	2	0			
%		67		58		33	0	0	0	17	0			
JORDAN														
OJAM	6					Y	Y	Y		Y				
	24	ILS	Ι	VORDME / NDB		Y	Y	Y		Y				
OJAI	08L	ILS	Ι	NDB DME		Y	Y	Y		Y				
	08R			NDB DME		Y	Y	Y		Y				
	26L	ILS	II	VOR / NDB		Y	Y	Y		Y				
	26R	ILS	Ι	VORDME / NDB		Y	Y	Y		Y				
OJAQ	1	ILS	Ι	VORDME		Y	Y	Y		Y				
	19	N/A	N/A			Y	N/A	Y		Y		LNAV/VNAV not feasible		
Total	8	6		6	Y	8	8	8	0	8	0			
%		75		75		100	100	100	0	100	0			

		Conve	ntional	Approaches		APTA		CC	0	CI	00	
State/Aerodrome Location Indicator	RWY	Preci	sion	VOR or NDB	PBN PLAN	LNAV	LNAV /	RNAV SID	ссо	RNAV STAR	СDО	Remarks
		ILS	CAT		Update date		VNAV					
1	2	3	4	5	6	7	8	9	10	11	12	13
KUWAIT												
ОКВК	15L	ILS	Π			Y	Y	Y		Y		
	15R	ILS	II	VORDME		Y	Y	Y		Y		
	33L	ILS	II	VORDME		Y	Y	Y		Y		
	33R	ILS	II			Y	Y	Y		Y		
Total	4	4		2	Y	4	4	4	0	4	0	
%		100		50		100	100	100	0	100	0	
LEBANON												
OLBA	3	ILS	Ι	VORDME		Y				Y		
	16	ILS	Ι	VORDME		Y				Y		
	17	ILS	Ι	VORDME / NDB		Y				Y		
	21					Y				Y		
	34	N/A		N/A		N/A				N/A		Not used for landing
	35	N/A		N/A		N/A				N/A		Not used for landing
Total	6	5		5	Ν	6	0	0	0	6	0	
%		83		83		100	0	0	0	100	0	
LIBYA												
HLLB	15R			VORDME								VOR not flight checked
	15L			VORDME								VOR not flight checked
	33R			VORDME								VOR not flight checked
	33L	ILS	Ι	VORDME								ILS not flight checked

		Conve	ntional	Approaches		APTA		CC	0	CI	00	
State/Aerodrome Location Indicator	RWY	Preci	sion	VOR or NDB	PBN PLAN	LNAV	LNAV /	RNAV SID	ссо	RNAV STAR	СDО	Remarks
		ILS	CAT		Update date		VNAV			~		
1	2	3	4	5	6	7	8	9	10	11	12	13
HLLS	13	ILS	Ι	VORDME								ILS not flight checked
	31			VORDME								VOR not flight checked
HLLT	9			VORDME								VOR not flight checked
	27	ILS	Ι	VORDME								ILS not flight checked
Total	8	3		8	Ν	0	0	0	0	0	0	
%		38		100		0	0	0	0	0	0	
OMAN												
OOMS	08R	ILS	Ι	VORDME								
	26L	ILS	Ι	VORDME								
OOSA	7			VORDME								
	25	ILS	Ι	VORDME								
Total	4	3		4	Y	0	0	0	0	0	0	
%		75		100		0	0	0	0	0	0	
QATAR												
OTBD	15	ILS	Ι	VORDME		Y	N/A	Y		Y		LNAV/VNAV not feasible
	33	ILS	II/III	VORDME/N DB		Y	Y	Y		Y		
ОТНН	16L	ILS	I/II/III	VORDME		Y	Y	Y		Y		
	16R	ILS	I/II/III	VORDME		Y	Y	Y		Y		
	34L	ILS	I/II/III	VORDME		Y	Y	Y		Y		
	34R	ILS	I/II/III	VORDME		Y	Y	Y		Y		
Total	6	6		6	Y	6	6	6	0	6	0	
%		100		100		100	100	100	0	100	0	

		Conve	ntional	Approaches		APTA		CC	0	СІ	00	
State/Aerodrome Location Indicator	RWY	Preci	ision	VOR or NDB	PBN PLAN	LNAV	LNAV /	RNAV SID	ссо	RNAV STAR	СDО	Remarks
		ILS	CAT		Update date		VNAV	512		JIAK		
1	2	3	4	5	6	7	8	9	10	11	12	13
SAUDI ARABIA												
OEDF	16L	ILS	II	VORDME								
	16R	ILS	II	VORDME								
	34L	ILS	II	VORDME								
	34R	ILS	II	VORDME								
OEJN	16L	ILS	Ι	VORDME		Y				Y		
	16C	ILS	II			Y				Y		
	16R	ILS	Π			Y				Y		
	34L	ILS	П			Y				Y		
	34C	ILS	П	VORDME		Y				Y		
	34R	ILS	Ι	VORDME		Y				Y		
OEMA	17	ILS	Ι	VORDME		Y		Y		Y		
	18			VORDME		Y		Y		Y		
	35	ILS	Ι	VORDME		Y		Y		Y		
	36	ILS	Ι	VORDME		Y		Y		Y		
OERK	15L	ILS	Ι	VORDME								
	15R	ILS	Ι									
	33L	ILS	Ι									
	33R	ILS	Ι	VORDME								
Total	18	17		13	Y	10	0	4	0	10	0	
%		94		72		56	0	22	0	56	0	
SUDAN												
HSNN	4					Y	Y					

		Conve	ntional	Approaches		APTA		CC	0	СІ	00	
State/Aerodrome Location Indicator	RWY	Precision		VOR or NDB	PBN PLAN	LNAV	LNAV /	RNAV SID	ссо	RNAV STAR	CDO	Remarks
		ILS	CAT		Update date		VNAV			STIR		
1	2	3	4	5	6	7	8	9	10	11	12	13
	22					Y	Y					
HSOB	1					Y	Y					
	19					Y	Y					
HSSS	18	ILS	Ι	VORDME		Y	Y					
	36	ILS	Ι	VORDME		Y	Y					
HSPN	17			VORDME / NDB		Y	Y					
	35	ILS	Ι	VORDME / NDB		Y	Y					
Total	6	3		4	Υ	6	6	0	0	0	0	
%		50		67	Apr. 2014	100	100	0	0	0	0	
SYRIA												
OSAP	9			VORDME								
	27	ILS	II	VORDME / NDB								
OSLK	17	ILS	Ι	VORDME / NDB								
	35											
OSDI	05L			VOR								
	05R	ILS	П	VORDME / NDB								
	23L			VORDME / NDB DME								
	23R	ILS	Π	VORDME		Y	Y					
Total	8	4		7	Y	1	1	0	0	0	0	

		Conve	ntional	Approaches		APTA		CC	0	CI	00	
State/Aerodrome Location Indicator	RWY	Prec	ision	VOR or NDB	PBN PLAN	LNAV	LNAV /	RNAV SID	ссо	RNAV STAR	СДО	Remarks
		ILS	CAT		Update date		VNAV					
1	2	3	4	5	6	7	8	9	10	11	12	13
%		50		88		13	13	0	0	0	0	
UNITED ARAB EMIRATES												
OMAA	13L	ILS	П					Y		Y		
	13R	ILS	Ι	VOR				Y		Y		
	31L	ILS	II/III	VOR				Y		Y		
	31R	ILS	II					Y		Y		
OMAD	13			VORDME		Y				Y		
	31	ILS	Ι	VORDME		Y				Y		
OMAL	1	ILS	Ι	VOR								
	19			VOR								
OMDB	12L	ILS	I/II/III	VOR		Y	Y	Y		Y		
	12R	ILS	I/II/III	VOR		Y	Y	Y		Y		
	30L	ILS	I/II/III			Y	Y	Y		Y		
	30R	ILS	I/II/III	VOR		Y	Y	Y		Y		
OMDW	12	ILS	II/III			Y	Y	Y		Y		
	30	ILS	II/III			Y	Y	Y		Y		
OMFJ	11							Y				
	29	ILS	Ι	VOR				Y				
OMRK	16			VOR								
	34	ILS	Ι	VOR								
OMSJ	12	ILS	Ι			Y	Y	Y		Y		
	30	ILS	Π			Y	Y	Y		Y		

		Conve	ntional	Approaches		APTA		CC	0	CI	00		
State/Aerodrome Location Indicator	RWY	Precision		VOR or NDB	PBN PLAN	LNAV /	RNAV SID	ссо	RNAV STAR	СDО	Remarks		
		ILS	САТ		Update date		VNAV	5112		SIAK			
1	2	3	4	5	6	7	8	9	10	11	12	13	
Total	20	16		12	Y	10	8	14	0	14	0		
%		80		60		50	40	70	0	70	0		
YEMEN													
OYAA	8	ILS	Ι	VORDME									
	26			VORDME									
OYHD	3			VOR									
	21			VOR / NDB		Y				Y			
OYRN	6												
	24			VORDME									
OYSN	18	ILS	Ι	VORDME/N DB		Y	Y	Y		Y			
	36			VOR		Y	Y	Y		Y			
OYTZ												NO DATA	
Total	8	2		7	Y	3	2	2	0	3	0		
%		25		88		38	25	25	0	38	0		
]	Results						-	
Fotal	162	102		124	9	77	41	52	6	65	6	9 PBN APV + 102 ILS (111/162)	
Percentage (%)		63		77	60	48	25	32	4	40	4	69% RWY Ends with Vertical guidance	
58 Aerodro	mes					Per Aero	odromes	19	2	22	2	PBN RWYs 77 + 4 = 8	

33

%

3

38

3

81/162 = 50 %

B0-SURF: Safety and Efficiency of Surface Operations (A-SMGCS Level 1-2)

Description and purpose

Basic A-SMGCS provides surveillance and alerting of movements of both aircraft and vehicles on the aerodrome thus improving runway/aerodrome safety. ADS-B information is used when available (ADS-B APT).

Main performance impact:

KPA- 01 – Access and	КРА-02 –	КРА-04 –	KPA-05 –	KPA-10 –
Equity	Capacity	Efficiency	Environment	Safety
Y	Y	Y	Y	Y

Applicability consideration:

A-SMGCS is applicable to any aerodrome and all classes of aircraft/vehicles. Implementation is to be based on requirements stemming from individual aerodrome operational and cost-benefit assessments. ADS-B APT, when applied is an element of A-SMGCS, is designed to be applied at aerodromes with medium traffic complexity, having up to two active runways at a time and the runway width of minimum 45 m.

B0-SURF: Safety and	B0-SURF: Safety and Efficiency of Surface Operations (A-SMGCS Level 1-2)										
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets								
A-SMGCS Level 1*	OBBI, HECA, OIII, OKBK, OOMS, OTBD, OTHH, OEDF, OEJN, OERK, OMDB, OMAA, OMDW	Indicator: % of applicable international aerodromes having implemented A-SMGCS Level 1 Supporting Metric: Number of applicable international aerodromes having implemented A- SMGCS Level 1	70% by Dec. 2017								
A-SMGCS Level 2*	OBBI, HECA, OIII, OKBK, OOMS, OTBD, OTHH, OEJN, OERK, OMDB, OMAA, OMDW	Indicator: % of applicable international aerodromes having implemented A-SMGCS Level 2 Supporting Metric: Number of applicable international aerodromes having implemented A- SMGCS Level 2	50% by Dec. 2017								

**Reference: Eurocontrol Document – "Definition of A-SMGCS Implementation Levels, Edition 1.2, 2010".*

TABLE B0-SURF (A-SMGCS Level 1-2)

EXPLANATION OF THE TABLE

Column

5

- 1 Name of the State
- 2 Name of City/Aerodrome and Location Indicator
- 3 Status of implementation of A-SMGCS Level 1, where:
 - Y Yes, implemented
 - N No, not implemented
- 4 Status of implementation of A-SMGCS Level 2, where:
 - Y Yes, implemented
 - N No, not implemented
 - Action plan short description of the State's Action Plan with regard to the implementation of A-SMGCS Level 1-2, especially for items with "N".
- 6 Remarks

	City/ Aerodrome Location Indicator	Level 1	Level 2	Action Plan	Remarks
State					
1	2	3	4	5	6
BAHRAIN	Bahrain/Bahrain Intl (OBBI)	N	N	A-SMGCS Level 1-2 Project is under Execution phase. expected completion on Dec 2015	
EGYPT	Cairo/Cairo Intl (HECA)	Y	Y		
IRAN	Tehran/Mehrabad Intl (OIII)	N	Ν		
KUWAIT	Kuwait/Kuwait Intl (OKBK)	N	N		
OMAN	Muscat/Muscat Intl (OOMS)	N	N		
QATAR	Doha/Doha Intl (OTBD)	Y	Y		
	Doha/Hamad Intl (OTHH)	Y	Y		
SAUDI ARABIA	Dammam/King Fahad Intl (OEDF)	N	N		
	JEDDAH/King Abdulaziz Intl (OEJN)	N	Ν		
	RIYADH/King Khalid Intl (OERK)	N	N		
UAE	Abu Dhabi/Abu Dhabi Intl (OMAA)	Y	Y	Level 4 2017	
	Dubai/Dubai Intl (OMDB)	Y	Y	Level 4 2016	
	DUBAI/Al Maktoum Intl (OMDW)	Y	N	Level 4 2018	
Total Percentage		46%	46%		

B0 – ACDM: Improved Airport Operations through Airport-CDM

Description and purpose

To implement collaborative applications that will allow the sharing of surface operations data among the different stakeholders on the airport. This will improve surface traffic management reducing delays on movement and manoeuvring areas and enhance safety, efficiency and situational awareness.

Main performance impact:

KPA- 01 – Access and Equity	KPA-02 – Capacity	KPA-04 – Efficiency	KPA-05 – Environment	KPA-10 – Safety
N	Y	Y	Y	Ν

Applicability consideration:

Local for equipped/capable fleets and already established airport surface infrastructure.

BO – ACDA	B0 – ACDM: Improved Airport Operations through Airport-CDM										
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets								
A-CDM	OBBI, HECA, OIII, OKBK, OOMS, OTBD, OTHH, OEJN, OERK, OMDB, OMAA, OMDW	Indicator: % of applicable international aerodromes having implemented improved airport operations through airport-CDM Supporting metric: Number of applicable international aerodromes having implemented improved airport operations through airport- CDM	40% by Dec. 2017								

TABLE B0-ACDM

EXPLANATION OF THE TABLE

Column

- 1 Name of the State
- 2 Name of City/Aerodrome and Location Indicator
- 3 Status of implementation of Apron Management, where:
 - Y Yes, implemented
 - N No, not implemented
- 4 Status of implementation of ATM-Aerodrome coordination, where:
 - Y Yes, implemented
 - N No, not implemented
- 5 Terminal & runway capacity is declared, where:
 - Y Yes, declared
 - N No, not declared
- 6 Action plan short description of the State's Action Plan with regard to the implementation of B0-ACDM.
- 7 Remarks

State	City/ Aerodrome Location Indicator	Apron Management	ATM- Aerodrome Coordination	Terminal &runway capacity declared	Action Plan	Remarks
1	2	3	4	5	6	7
BAHRAIN	Bahrain/Bahrain Intl (OBBI)	N	N	N	2018	
EGYPT	Cairo/Cairo Intl (HECA)	N	N	N		
IRAN	Tehran/Mehrabad Intl (OIII)	N	N	N		
KUWAIT	Kuwait/Kuwait Intl (OKBK)	N	N	N		
OMAN	Muscat/Muscat Intl (OOMS)	N	N	N		
QATAR	Doha/Doha Intl (OTBD)	N	N	N		
	Doha/Hamad Intl (OTHH)	N	N	N		
SAUDI ARABIA	Jeddah/King Abdulaziz Intl (OEJN)	N	N	N		
	Riyadh/King Khalid Intl (OERK)	N	N	N		
UAE	Abu Dhabi/Abu Dhabi Intl (OMAA)	N	N	N	2017	
	Dubai/Dubai Intl (OMDB)	N	N	N	2016	
	Dubai/Al Maktoum Intl (OMDW)	N	N	N	2017	
Total Percentage		0	0	0		

B0 – FICE: Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration

Description and purpose

To improve coordination between air traffic service units (ATSUs) by using ATS Interfacility Data Communication (AIDC) defined by the ICAO *Manual of Air Traffic Services Data Link Applications* (Doc 9694). The transfer of communication in a data link environment improves the efficiency of this process particularly for oceanic ATSUs.

Main performance impact:

KPA- 01 – Access and Equity	KPA-02 – Capacity	KPA-04 – Efficiency	KPA-05 – Environment	KPA-10 - Safety
Ν	Y	Y	Ν	Y

Applicability consideration:

Applicable to at least two area control centres (ACCs) dealing with enroute and/or terminal control area (TMA) airspace. A greater number of consecutive participating ACCs will increase the benefits.

B0 – FICE: Increa	used Interoperal	vility, Efficiency and Capacity through Ground -	Ground Integration
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets
AMHS capability	All States	Indicator: % of States with AMHS capability Supporting metric: Number of States with AMHS capability	70% of States with AMHS capability by Dec. 2017
AMHS implementation /interconnection	All States	Indicator: % of States with AMHS implemented (interconnected with other States AMHS) Supporting metric: Number of States with AMHS implemented (interconnections with other States AMHS)	60% of States with AMHS interconnected by Dec. 2017
Implementation of AIDC/OLDI between adjacent ACCs	All ACCs	Indicator: % of FIRs within which all applicable ACCs have implemented at least one interface to use AIDC/OLDI with neighboring ACCs Supporting metric: Number of AIDC/OLDI interconnections implemented between adjacent ACCs	70% by Dec. 2017

TABLE B0-FICE

EXPLANATION OF THE TABLE

Column

5

- 1 Name of the State
- 2, 3, 4 Status of AMHS Capability and Interconnection and AIDC/OLDI Capability, where:
 - Y Fully Implemented
 - N Not Implemented
 - Status of AIDC/OLDI Implementation, where:
 - Y If AIDC/OLDI is implemented at least with one neighbouring ACC N Not Implemented
 - 6 Action plan short description of the State's Action Plan with regard to the implementation of B0-FICE.
 - 7 Remarks

State	AMHS Capability	AMHS Interconnection	AIDC/OLDI Capability	AIDC/OLDI Implementation	Action Plan	Remarks
1	2	3	4	5	6	7
Bahrain	Y	N	Y	Ν	Sep 2015 for AMHS Int.	
Egypt	Y	Y	Y	Y		
Iran	N	N	Y	Ν		Contract signed for AMHS
Iraq	N	N	Ν	N		
Jordan	Y	Y	Y	N		
Kuwait	Y	N	Y	N	Dec 2015 for AMHS Int.	
Lebanon	Y	Ν	Y	Y		
Libya	Y	N	Y	N		
Oman	Y	Y	Y	N		
Qatar	Y	Y	Y	Y		local implementation for OLDI
Saudi Arabia	Y	Y	Y	Y		local implementation for AIDC
Sudan	Y	Y	Y	Ν		AMHS Int. Feb 2015
Syria	N	N	Ν	N		
UAE	Y	Y	Y	Y	Q2-2016	Local implementation for OLDI
Yemen	N	N	N	N	Dec 2015 for AMHS	Contract signed for AMHS
Total Percentage	73%	47%	80%	33%		

B0 – NOPS: Improved Flow Performance through Planning based on a Network-Wide view

Description and purpose

Air Traffic Flow Management (ATFM) is used to manage the flow of traffic in a way that minimizes delay and maximizes the use of the entire airspace. ATFM can regulate traffic flows involving departure slots, smooth flows and manage rates of entry into airspace along traffic axes, manage arrival time at waypoints or Flight Information Region (FIR)/sector boundaries and re-route traffic to avoid saturated areas. ATFM may also be used to address system disruptions including crisis caused by human or natural phenomena.

Experience clearly shows the benefits related to managing flows consistently and collaboratively over an area of a sufficient geographical size to take into account sufficiently well the network effects. The concept for ATFM and demand and capacity balancing (DCB) should be further exploited wherever possible. System improvements are also about better procedures in these domains, and creating instruments to allow collaboration among the different actors.

Guidance on the implementation of ATFM service are provided in the ICAO Doc 9971- Manual on Collaborative

Air Traffic Flow Management

Main performance impact:

KPA- 01 – Access and	КРА-02 –	КРА-04 –	KPA-05 –	KPA-10 –
Equity	Capacity	Efficiency	Environment	Safety
Y	Y	Y	Y	N/A

Applicability consideration:

Applicable to en-route and terminal airspace. Benefits can start locally. The larger the size of the concerned airspace the greater the benefits. Application will naturally span over a long period as traffic develops.

B0 – NOPS: Improved Flow Performance through Planning based on a Network-Wide view							
Elements	Applicability	y Performance Indicators/Supporting Metrics Targ		argets	ets 🗌		
ATFM Measures implemented in collaborative manner	All States	Indicator: % of States that have established a mechanism for the implementation of ATFM Measures based on collaborative decision Supporting metric: number of States that have established a mechanism for the implementation of ATFM Measures based on collaborative decision		by	Dec.		

Table B0-NOPS

TBD

APPENDIX C

ACAS V7.1 Status and regulation reference

State	ACAS V7.1 requirement	Regulation Reference	Remarks
1	2	3	4
Bahrain N	All fixed - wing turbine - engine aircraft having maximum take - off mass in excess of 5700 KG or approved passenger seating configuration of more than 19, will be required to be equipped with ACAS II	1.5.1.5 in Bahrain AIP	Air Navigation Technical Regulations (ANTR) – will be updated to reflect Annex 10 (Volume IV)
Egypt Y	ACAS II mandated		Need to update regulation
Iran Y	 4.3.5.3.1. New ACAS installations after 1 January 2014 shall monitor own aircraft's vertical rate to verify compliance with the RA sense. If non-compliance is detected, ACAS shall stop assuming compliance, and instead shall assume the observed vertical rate. 4.3.5.3.2. After 1 January 2017, all ACAS units shall comply with the requirements stated in 4.3.5.3.1. 	Aeronautical Telecommunicati ons bylaw, articles 3 and 4	According to articles 3 and 4 of Iran aeronautical telecommunications by law, ratified by board of ministers, Airborne collision avoidance systems are categorized as aeronautical telecommunications systems and should be manufactured, installed and maintained according to standards of Annex 10. -Since no difference to ICAO annex 10 is notified, ACAS V 7.1 is mandatory according to provisions of annex 10 amendment 85. -Airworthiness directives issued by FAA and EASA shall to be implemented by Iranian AOC holders.
Iraq			shar to be implemented by manual rice holders.
Jordan Y	Mandated in June 2014		
Kuwait			
Lebanon Y	Mandated		
Libya			
Oman			
Qatar Y	3.5.3.1 New ACAS installations after 1 January 2014 shall monitor own aircraft's vertical rate to verify compliance with the RA sense. If non-compliance is detected, ACAS shall stop assuming compliance, and instead shall assume the observed vertical rate. Note 1.— This overcomes the retention of an RA sense that would work only if followed. The revised vertical rate assumption is more likely to allow the logic to select the opposite sense when it is	QCAR – OPS 1, Subpart K, QCAR – OPS 1.668 – Airborne collision avoidance system	References: <u>http://www.caa.gov.qa/en/safety_regulat_ions</u>

State	ACAS V7.1 requirement	Regulation Reference	Remarks
1	2	3	4
	consistent with the non-complying aircraft' s vertical rate. Note 2.— Equipment complying with RTCA/DO-185 or DO-185A standards (also known as TCAS Version 6.04A or TCAS Version 7.0) do not comply with this requirement. Note 3.— Compliance with this requirement can be achieved through the implementation of traffic alert and collision avoidance system (TCAS) Version 7.1 as specified in RTCA/DO-185B or EUROCAE/ED143. 4.3.5.3.2 QCAR CNS Note: All ACAS shall be compliant with the requirement in 4.3.5.3.1. 4.3.5.3.3 After 1 January 2017, all ACAS units shall comply with the requirements stated in 4.3.5.3.1.	QCAR Part 10 - Volume 4 Chapter 4 Airborne Collision Avoidance System	
Saudi Arabia			
Sudan Y	Mandated	Amended ANNEX 10(V4)- ANNESX 6(V2)	According to adopted ANNEXEX TO SUDAN REGULATION (SUCAR 10 V4 Par. 4.3.5.3.1 AND SUCAR 6 V2 par 2.05.15)
Syria			
UAE Y	CAR-OPS 1.668 Airborne Collision Avoidance System (See IEM OPS 1.668) and CAAP 29 An operator shall not operate a turbine powered aeroplane: (a) Having a MCTOM (maximum certificated take-off mass) in excess of 5700 kg or a MAPSC (maximum approved passenger seating configuration) of more than 19 unless it is equipped with an airborne collision avoidance system (ACAS) II Change 7.0 . From 31 January 2015 such aeroplanes shall be equipped with ACAS II, Change 7.1. (b) Manufactured after 31 December 2012 and having a MCTOM in excess of 5700 kg or a MAPSC of more than 19 unless it is equipped with ACAS II, Change 7.1."	CAR-OPS 1.668 Airborne Collision Avoidance System (See IEM OPS 1.668) and CAAP 29 And AIP 1.5.6.6	https://www.gcaa.gov.ae/en/ePublication/Pages/CA Rs.aspx?CertID=CARs
Yemen Y	From 31 January 2015 such aeroplanes shall be equipped with ACAS II, Change 7.1		Reference need to be provided