GUIDANCE MATERIAL
FOR THE CERTIFICATION
AND OPERATION OF
STATE AIRCRAFT IN
EUROPEAN RVSM
AIRSPACE

Edition : 2.0
Edition Date : June 2014
Status : Released issue
Class : General Public

DIRECTORATE AIR TRAFFIC MANAGEMENT
DOCUMENT DESCRIPTION

Document Title

GUIDANCE MATERIAL FOR THE CERTIFICATION AND OPERATION OF STATE AIRCRAFT IN EUROPEAN RVSM AIRSPACE

<table>
<thead>
<tr>
<th>EDITION:</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDITION DATE:</td>
<td>June 2014</td>
</tr>
</tbody>
</table>

Abstract

This document has been produced to provide guidance to operators of State aircraft operating with 1000 ft vertical separation in European RVSM airspace.

The guidance material contains general information relating to the certification and approval of RVSM aircraft types and flight plan procedures. It is updated because of the publication of EASA regulatory documents superseding JAA TGL n°6 rev 1.

This document supersedes the “Guidance material for the certification and operation of State aircraft in European RVSM airspace v1.0” (2012).

Keywords

RVSM Certification Operational approval Procedures

Reduced Vertical State aircraft

Separation Minimum

CONTACT PERSON:

Dominique COLIN

TEL: 93182

Pascal BARRET

TEL: 91145

DIVISION: DATM/CM/CNS

DOCUMENT STATUS AND TYPE

<table>
<thead>
<tr>
<th>STATUS</th>
<th>CATEGORY</th>
<th>CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Draft</td>
<td>Executive Task</td>
<td>General Public</td>
</tr>
<tr>
<td>Draft</td>
<td>Specialist Task</td>
<td>EATMP</td>
</tr>
<tr>
<td>Proposed Issue</td>
<td>Lower Layer Task</td>
<td>Restricted</td>
</tr>
<tr>
<td>Released Issue</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRONIC BACKUP

INTERNAL REFERENCE NAME:

<table>
<thead>
<tr>
<th>HOST SYSTEM</th>
<th>MEDIA</th>
<th>SOFTWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Windows</td>
<td>Type: Hard disk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media Identification:</td>
<td></td>
</tr>
</tbody>
</table>
The following table identifies all management authorities who have successively approved the present issue of this document.

<table>
<thead>
<tr>
<th>AUTHORITY</th>
<th>NAME AND SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVSM guidance for State aircraft Project managers</td>
<td>Dominique COLIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pascal BARRET</td>
<td></td>
</tr>
<tr>
<td>CMAC/CNS Head of unit</td>
<td>Jorge PEREIRA</td>
<td></td>
</tr>
<tr>
<td>NMD/NS/SCC EUR RMA</td>
<td>Andrew LEWIS</td>
<td></td>
</tr>
<tr>
<td>NMD/NS Head of division</td>
<td>Pascal DIAS</td>
<td></td>
</tr>
<tr>
<td>ATM/CMC Head of division</td>
<td>Michael STEINFURTH</td>
<td></td>
</tr>
<tr>
<td>Director ATM</td>
<td>Philippe MERLO</td>
<td></td>
</tr>
</tbody>
</table>
The following table records the complete history of the successive editions of the present document.

<table>
<thead>
<tr>
<th>EDITION</th>
<th>DATE</th>
<th>REASON FOR CHANGE</th>
<th>SECTIONS/PAGES AFFECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>19/09/2012</td>
<td>Final draft v 1.0</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>22/05/2014</td>
<td>Publication of EC 965/2012, EASA CS-ACNS and Part-SPA; Scope of guidance extended to NATO State aircraft flying in Europe</td>
<td>Across document</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

OBJECTIVE AND SCOPE... 2

1. INTRODUCTION .. 3
 1.1 BACKGROUND .. 3
 1.2 RELATED MATERIAL ... 3

2. EUROPEAN REGIONAL MONITORING AGENCY (RMA) .. 5
 2.1 FUNCTION ... 5
 2.2 RVSM APPROVAL STATUS .. 5
 2.3 COMPLIANCE WITH MONITORING TARGETS ... 5
 2.4 HEIGHT-KEEPING PERFORMANCE ... 6

3. AIRCRAFT CERTIFICATION .. 7
 3.1 MASPS AND PERFORMANCE REQUIREMENTS .. 7
 3.2 RVSM APPROVAL .. 8
 3.3 PERFORMANCE DATA ... 9
 3.4 STATE AIRCRAFT RECOMMENDATIONS ... 10

4. GUIDANCE .. 12
 4.1 COORDINATION WITH THE EUR RMA .. 12
 4.1.1 RVSM Approval Database ... 13
 4.1.2 Monitoring Programme and Maintenance of the RVSM Approval Database 13
 4.2 FLIGHT PLANNING.. 16
 4.2.1 General Procedures .. 16
 4.2.2 Flight Planning for State Aircraft .. 16
 4.3 ALTITOMETRY SYSTEM ERROR (ASE) .. 17
 4.3.1 Causes of ASE ... 17
 4.3.2 Resolving ASE Problems ... 18

APPENDIX A – RMA RVSM APPROVAL DATA REQUIREMENTS... 20

APPENDIX B – GENERAL REQUIREMENTS FOR RVSM OPERATIONS... 21

APPENDIX C – EUR RMA F1... 22

APPENDIX D – EUR RMA F2... 24
TABLE OF FIGURES

Figure 1 HMU locations in Europe...10
Figure 2 EASA regulatory system...11
Figure 3: Action upon receipt of a report of non-approved aircraft in EUR RVSM airspace...15
Figure 4: Flight planning requirements for State aircraft in EUR RVSM airspace............17
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AoA</td>
<td>Angle of Attack</td>
</tr>
<tr>
<td>AAD</td>
<td>Assigned Altitude Deviation</td>
</tr>
<tr>
<td>ACAS</td>
<td>Airborne Collision Avoidance System</td>
</tr>
<tr>
<td>ACC</td>
<td>Air Control Center</td>
</tr>
<tr>
<td>ADC</td>
<td>Air Data Computer</td>
</tr>
<tr>
<td>AMC</td>
<td>Acceptable Means of Compliance</td>
</tr>
<tr>
<td>ASE</td>
<td>Altimetry System Error</td>
</tr>
<tr>
<td>ATM</td>
<td>Air Traffic Management</td>
</tr>
<tr>
<td>CS</td>
<td>Certification Specification</td>
</tr>
<tr>
<td>EANPG</td>
<td>European Air Navigation Planning Group</td>
</tr>
<tr>
<td>EASA</td>
<td>European Aviation Safety Agency</td>
</tr>
<tr>
<td>EATMP</td>
<td>European Air Traffic Management Programme</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ECAC</td>
<td>European Civil Aviation Conference</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
</tr>
<tr>
<td>FMP</td>
<td>Flow Management Position (ACC)</td>
</tr>
<tr>
<td>FPL</td>
<td>Flight Plan</td>
</tr>
<tr>
<td>GAT</td>
<td>General Air Traffic</td>
</tr>
<tr>
<td>GMU</td>
<td>GPS Monitoring Unit</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HOMU</td>
<td>Height Monitoring Unit</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>JAA</td>
<td>Joint Aviation Authorities</td>
</tr>
<tr>
<td>MASPS</td>
<td>Minimum Aircraft System Performance Specification</td>
</tr>
<tr>
<td>MEL</td>
<td>Minimum Equipment List</td>
</tr>
<tr>
<td>MMEL</td>
<td>Master Minimum Equipment List</td>
</tr>
<tr>
<td>OAT</td>
<td>Operational Air Traffic</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>RPL</td>
<td>Repetitive Flight Plan</td>
</tr>
<tr>
<td>RCO</td>
<td>RVSM Coordination Officer</td>
</tr>
<tr>
<td>RMA</td>
<td>Regional Monitoring Agency</td>
</tr>
<tr>
<td>RVSM</td>
<td>Reduced Vertical Separation Minimum of 300 m (1000 ft) between FL 290 and FL 410 inclusive</td>
</tr>
<tr>
<td>SARPS</td>
<td>Standards and Recommended Practices</td>
</tr>
<tr>
<td>SB</td>
<td>Service Bulletin</td>
</tr>
<tr>
<td>SDB</td>
<td>State Data Base</td>
</tr>
<tr>
<td>SSE</td>
<td>Static Source Error</td>
</tr>
<tr>
<td>SSSEC</td>
<td>Static Source Error Correction</td>
</tr>
<tr>
<td>STC</td>
<td>Supplementary Type Certificate</td>
</tr>
<tr>
<td>STCA</td>
<td>Short-Term Conflict Alert</td>
</tr>
<tr>
<td>TC</td>
<td>Type Certificate</td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic Collision Avoidance System</td>
</tr>
<tr>
<td>TGL</td>
<td>Temporary Guidance Leaflet (JAA)</td>
</tr>
<tr>
<td>TLS</td>
<td>Target Level of Safety</td>
</tr>
<tr>
<td>TVE</td>
<td>Total Vertical Error</td>
</tr>
<tr>
<td>VSM</td>
<td>Vertical Separation Minimum</td>
</tr>
</tbody>
</table>
DEFINITIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Address</td>
<td>Ref ICAO Annex 10 volume IV Chapter 1: “A unique combination of twenty-four bits available for assignment to an aircraft for the purpose of air-ground communications, navigation and surveillance”. Also known as ICAO-24 bit address.</td>
</tr>
<tr>
<td>Altimetry System Error (ASE)</td>
<td>The difference between the pressure altitude displayed to the flight crew when referenced to the ISA standard ground pressure setting (1013.2hPa/29.92in.Hg) and the free stream pressure altitude.</td>
</tr>
<tr>
<td>Assigned Altitude Deviation (AAD)</td>
<td>The difference between the transmitted Mode C/S altitude and the assigned altitude/flight level.</td>
</tr>
<tr>
<td>Basic RVSM Envelope</td>
<td>The range of Mach numbers and gross weights within the altitude ranges FL 290 to FL 410 (or maximum attainable altitude) where an aircraft can reasonably expect to operate most frequently.</td>
</tr>
<tr>
<td>General Air Traffic (GAT)</td>
<td>Flights conducted in accordance with the rules and provisions of ICAO.</td>
</tr>
<tr>
<td>Height-Keeping Capability</td>
<td>Aircraft height-keeping performance which can be expected under nominal environmental operating conditions with proper aircraft operating practices and maintenance.</td>
</tr>
<tr>
<td>Height-Keeping Performance</td>
<td>The observed performance of an aircraft with respect to adherence to a flight level.</td>
</tr>
<tr>
<td>Operational Air Traffic (OAT)</td>
<td>Flights which do not comply with the provisions for GAT and for which rules and procedures have been specified by the appropriate authorities.</td>
</tr>
<tr>
<td>Monitoring Group</td>
<td>A group of aircraft which are made RVSM MASPS-compliant by a common compliance method. A group may include more than one aircraft type designator, although it more often includes specific aircraft series or variants. The height-keeping performance characteristics should be the same for all aircraft in the group.</td>
</tr>
<tr>
<td>Non-Group Aircraft</td>
<td>An aircraft which has been made RVSM-compliant by a unique method. Non-group aircraft are assessed on an individual basis and must all be regularly height-monitored.</td>
</tr>
<tr>
<td>Aberrant Aircraft</td>
<td>Aircraft for which the height-keeping performance characteristics are significantly different from the core distribution of aircraft.</td>
</tr>
</tbody>
</table>
Non-Compliant Aircraft

Aircraft which have a TVE of 300 feet or greater or an ASE of 245 feet or greater.

RVSM Approval

The approval to operate within RVSM-designated airspace with a 1000 ft vertical separation minimum, issued by the appropriate authority of the State in which the operator is based or of the State in which the aircraft is registered. To obtain such RVSM approval, operators must demonstrate to the said State that:

1) aircraft for which RVSM approval is sought have the vertical navigation performance capability required for RVSM operations through compliance with the criteria of the RVSM Minimum Aircraft Systems Performance Specification (MASPS);
2) they have instituted procedures in respect of continued airworthiness (maintenance and repair) practices and programmes;
3) they have instituted flight crew procedures for operations in the EUR RVSM airspace.

Note: the term “RVSM-APPROVED” will be used to indicate that an aircraft has been granted RVSM approval.

RVSM Entry Point

The first reporting point over which an aircraft passes or is expected to pass immediately before, upon, or immediately after initial entry into European RVSM airspace, normally the first reference point for applying a reduced vertical separation minimum.

RVSM Exit Point

The last reporting point over which an aircraft passes or is expected to pass immediately before, upon, or immediately after leaving European RVSM airspace, normally the last reference point for applying a reduced vertical separation minimum.

State Aircraft

For the purposes of European RVSM, only aircraft used by the military, customs and police services will qualify as State aircraft and will therefore be entitled to claim exemption from RVSM approval status. (ref. - ICAO Convention on International Civil Aviation, Article 3 (b)).

Target Level of Safety (TLS)

A generic term representing the level of risk which is considered acceptable under particular circumstances.

Total Vertical Error (TVE)

Vertical geometric difference between the actual pressure altitude flown by an aircraft and its assigned pressure altitude (flight level).
EXECUTIVE SUMMARY

To increase airspace capacity and to reduce delays and fuel costs, the Reduced Vertical Separation Minimum (RVSM) Programme provided an additional six flight levels between FL 290 and FL 410 inclusive on 24 January 2002. RVSM is now applicable within all airspace in the ECAC region.

The European Regional Monitoring Agency (EUR RMA) operated by EUROCONTROL is responsible for the safety oversight of operations within RVSM airspace. In addition to completing an annual safety assessment, the RMA is responsible for verifying the approval status and the height-keeping performance of aircraft operating with a 1000 ft vertical separation minimum between FL 290 and FL 410.

Since 2003 a number of issues have arisen regarding the operation of State aircraft within RVSM airspace, in particular the validation of height-keeping performance requirements for derivative aircraft types and the necessity for an RVSM approval to be issued by the appropriate State airworthiness authority.

This document is intended to provide a general reference for the operation of State aircraft flying under general air traffic rules within RVSM airspace. The main issues to be conveyed are:

- There is no exemption for State aircraft to operate as GAT within RVSM airspace with a 1000 ft vertical separation minimum without an RVSM approval. The absence of such approval does not mean that State aircraft cannot access RVSM-designated airspace, but it does require a separation of 2000 ft to be observed and a separate flight plan to be filed.
- Any derivative aircraft modified for specific functions must be validated against the RVSM MASPS before being granted an RVSM approval.
- Formation flights are not permitted within RVSM airspace with a 1000 ft vertical separation minimum.

In 2012 and 2013, the European Commission (EC) and the European Aviation Safety Agency (EASA) published documents related to RVSM. This document updates the EUROCONTROL “Guidance Material for the Certification and Operation of State Aircraft in European RVSM Airspace” published in 2012.

1 State aircraft means any aircraft used for military, customs and police purposes.
OBJECTIVE AND SCOPE

The objective of this document is to provide guidance to State airworthiness authorities and operators with regard to the requirements for operation with a 1000 ft vertical separation minimum within RVSM airspace. To facilitate comprehension, this document combines information from various ICAO Annexes and the European Union legal framework, including certification and guidance documents in order to present a clear overview of the responsibilities of both airworthiness authorities and operators.

The focus of this document is primarily the certification and approval of and aircraft height-keeping performance requirements for State aircraft operating in European RVSM airspace. It describes flight planning requirements (valid at the time of writing) but does not describe ATC procedures or the transition between civil/military areas or RVSM/non-RVSM airspace.

The material in this document is applicable to all State aircraft flights planned as GAT and operating with a 1000 ft vertical separation in RVSM airspace (i.e. excluding OAT and non-approved State aircraft operating within RVSM airspace with a 2000 ft vertical separation which is also possible under the agreed exemption regime but without a flight plan claiming RVSM compliance).
1. INTRODUCTION

1.1 Background

The RVSM Programme was introduced in the European Civil Aviation Conference (ECAC) region in January 2002. It introduced an additional 6 flight levels between FL 290 and FL 410 by reducing the vertical separation between those flight levels from 2000 ft to 1000 ft. As the risk of collision is inherently greater in an RVSM environment, stringent aircraft height-keeping performance requirements were introduced to maintain the level of risk within acceptable limits.

The aircraft height-keeping performance requirements were embodied in standards known as Minimum Aircraft System Performance Specifications (MASPS).

Since 2012 all European airspace between FL 290 and FL 410 are RVSM; the last region to go RVSM, in November 2011, was the EURASIA region to the east of the ICAO European region.

This means that all operators wishing to file an ICAO flight plan between these flight levels must have an RVSM approval; otherwise they will be operating in contravention of the requirements of the European Regional Supplementary Procedures, ICAO Doc. 7030/5.

The EUR RMA, operated by EUROCONTROL on behalf of the European Air Navigation Planning Group, is tasked with the safety oversight of operations within RVSM airspace. The RMA conducts an annual safety assessment, monitors aircraft height-keeping performance and also verifies the RVSM approval status of aircraft operating in RVSM airspace.

One of the greatest risks to safety within RVSM airspace is the operation of an aircraft declared as RVSM-approved when in reality the aircraft does not meet the technical performance criteria as defined in the MASPS. The RMA has noted with concern that a very significant number of aircraft operating as RVSM-approved without a known technical compliance method are military aircraft, often airframe derivatives (e.g. fuselage modifications or add-ons) whose height-keeping performance characteristics are not proven to be similar to the original design.

The importance for airworthiness authorities of understanding the process for approving an aircraft type or derivative cannot be overstated. This document is intended to provide guidance to national military authorities on the certification of new aircraft types and variants, the reporting of RVSM approvals and remedial action in the event of a poor altimetry system error (ASE) report submitted by the RMA.

1.2 Related Material

The requirements for the certification and operation of RVSM aircraft are contained in a number of ICAO Annexes and other guidance material. These are summarised below.
<table>
<thead>
<tr>
<th>Document</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAO Annex 6, Appendix 4</td>
<td>Describes generic minimum aircraft height-keeping performance requirements</td>
<td>Regulatory</td>
</tr>
<tr>
<td>ICAO Annex 6, Sections 7.2.x</td>
<td>Minimum RVSM equipment requirements, approval requirements, State responsibility for non-compliant aircraft, Minimum height-keeping monitoring requirements, State responsibility with regard to non-approved operators</td>
<td>Regulatory</td>
</tr>
<tr>
<td>ICAO Annex 11, Section 3.3.5.1</td>
<td>Requirements for initiation of an RVSM height-monitoring programme</td>
<td>Regulatory</td>
</tr>
<tr>
<td>JAA TGL No. 6 rev1</td>
<td>Recognised MASPS compliance method</td>
<td>Guidance</td>
</tr>
<tr>
<td>EC 965/2012 Subpart D</td>
<td>Technical requirements and administrative procedures related to air operations</td>
<td>Regulatory</td>
</tr>
<tr>
<td>EASA Part-SPA/AMC</td>
<td>Acceptable means of compliance</td>
<td>Guidance</td>
</tr>
<tr>
<td>EASA CS-ACNS</td>
<td>Certification specification and acceptable means of compliance</td>
<td>Guidance</td>
</tr>
<tr>
<td>AC 91-85</td>
<td>Authorisation of aircraft and operators for flight in RVSM</td>
<td>Guidance in the USA</td>
</tr>
<tr>
<td>ICAO Doc. 9574</td>
<td>Implementation of RVSM</td>
<td>Guidance</td>
</tr>
<tr>
<td>ICAO Doc. 9937</td>
<td>Operating procedures for an RMA</td>
<td>Guidance</td>
</tr>
<tr>
<td>European Regional Supplementary Procedures Doc. 7030/5</td>
<td>Flight rules applicable to RVSM airspace</td>
<td>Regulatory</td>
</tr>
<tr>
<td>Implementation of a 1000 ft VSM in European Airspace. EUR Doc. 009</td>
<td>Regional rules for implementation of RVSM in Europe</td>
<td>Guidance</td>
</tr>
</tbody>
</table>

Table 1: Certification and operating requirements for RVSM airspace
2. EUROPEAN REGIONAL MONITORING AGENCY (RMA)

2.1 Function

The RMA was established by EUROCONTROL in 2003 at the request of the ICAO European Air Navigation Planning Group. The main responsibilities of the RMA are to conduct statistical safety assessments, monitor height-keeping performance and verify the approval status of aircraft operating with 1000 ft vertical separation in European RVSM airspace.

A network of height monitoring unit (HMU) systems provides the data for the safety assessment and aircraft height-keeping performance, while the approval status is confirmed by comparing GAT/IFR flight plans with the database of aircraft approved for RVSM flights in Europe.

The height-keeping performance function can be further divided into a number of individual activities including:

1. Establish and maintain a list of RVSM monitoring groups defined by different compliance methods or height-keeping performance characteristics;
2. Monitor compliance with global and regional monitoring targets;
3. Conduct continuous monitoring group performance analysis; and

The RMA has developed proactive procedures to positively encourage safe operation and compliance with international requirements. However, the RMA cannot operate in isolation and it is necessary for aircraft operators and airworthiness authorities to ensure that approval records are accurate and that adequate procedures are in place to respond to concerns regarding height-keeping performance or compliance with monitoring targets.

2.2 RVSM Approval Status

Under its Terms of Reference, the RMA is obliged to maintain a database of RVSM approvals. Periodically the RMA compares samples of flight plan data where RVSM approval has been stated with the database of approvals. Any aircraft not listed in the database of approvals is considered non-approved and reported to the appropriate State authority. ICAO Annex 6 requires State authorities responsible for the issuing of RVSM approvals to establish provisions and procedures to ensure that appropriate action is taken in respect of operators and aircraft operating in RVSM airspace without a valid RVSM approval.

2.3 Compliance with Monitoring Targets

Every operator of group-approved aircraft is required to participate in regional height-monitoring programmes. The global requirement (contained in ICAO Annex 6) states that every operator of RVSM group-approved aircraft is required to have a minimum of 2 aircraft of each monitoring group operated height-monitored either every 2 years or every 1000 flying hours, whichever is the greater.
The RMA maintains a table of regional minimum monitoring requirements which includes 2 main categories. The first category is equivalent to the global monitoring requirement, i.e. 2 aircraft every 2 years, and is reserved for monitoring groups for which sufficient evidence exists that the RVSM MASPS is valid. A second category contains monitoring groups for which full verification of MASPS is incomplete. This includes new aircraft types with relatively little monitoring data and/or less than 2 years of stable ASE performance data. The RMA recommends a monitoring target of 60% of the operator fleet every 2 years.

The RMA conducts annual monitoring group performance reviews in cooperation with the FAA and recommends transfers of monitoring groups from the second category to the first where sufficient evidence exists to support final verification of the RVSM MASPS. Very occasionally, monitoring group performance deteriorates and groups are sometimes moved back from category 1 to category 2. Any aircraft approved as a non-group aircraft (category 3) is required to be height-monitored every 2 years.

The RMA monitors operator compliance with global and regional monitoring requirements and submits reports on non-compliant operators to the competent State authorities. A summary of non-compliance with monitoring targets is included in the annual safety assessment. It is a State responsibility to ensure that operators comply with global and regional monitoring targets.

2.4 Height-keeping Performance

The database of RVSM approvals provides not only a reference when verifying the approval status of aircraft, but also allows height-keeping performance data to be correlated with individual airframes. Height-monitoring results include the aircraft address (ICAO 24-bit address) extracted from the aircraft down-linked parameters. This data provides a link to a known aircraft approval. If the RMA does not have the correct aircraft address then the results cannot be correlated to one specific airframe.

If a monitoring group fails to meet the global height-keeping performance requirements then the RMA contacts the manufacturer, or approved design organisation, as well as the authority responsible for the initial airworthiness approval in order to initiate an investigation.

With regard to individual airframe performance, the RMA has 3 categories of result; fully compliant, aberrant or non-compliant. Should an aircraft be height-monitored and found to be non-compliant, the operator and appropriate State authority must be notified within 21 days. Any subsequent action is the responsibility of the appropriate State authority; however, the RMA recommends an immediate investigation and inspection of the aircraft. The RMA can provide technical advice as well as height-monitoring data to support any investigation.

An aircraft that is aberrant either has an ASE characteristic that is significantly different from the core performance of the appropriate monitoring group, or exhibits a performance trend that if continued will result in the aircraft becoming non-compliant. The RMA reviews all aberrant height-monitoring results on a monthly basis and determines which aircraft, if any, require additional investigation. Once an investigation is initiated the procedure is similar to that for a non-compliant aircraft (Figure 1).

Whenever an RMA individual airframe height-keeping performance investigation is initiated, the competent authority should ensure that appropriate action is taken. This should include an initial acknowledgement followed by confirmation of what action is being taken to address the problem. Again, the RMA can provide technical advice as well as height-monitoring data to support any investigations.
3. AIRCRAFT CERTIFICATION

3.1 MASPS and Performance Requirements

In Europe, the RVSM Minimum Aircraft Systems Performance Specification (MASPS) is now published under 3 separated documents from the EU and EASA frameworks:

- EC n°965/2012 laying down technical requirements and administrative procedures related to air operations (including RVSM operations)
- Part-SPA for detailed operational requirements
 - The RVSM approval process;
 - RVSM operational approvals.
- CS-ACNS for detailed technical requirements and airworthiness
 - RVSM performance;
 - Aircraft system;
 - Airworthiness approval;
 - Continued airworthiness (maintenance).

First document is available from the Eur-Lex website http://eur-lex.europa.eu and EASA documents from the EASA website http://www.easa.europa.eu

All operators intending to fly aircraft with 1000 ft vertical separation in RVSM airspace must have a valid RVSM approval from the appropriate State authority. An RVSM approval has 3 components:

1. The aircraft has a vertical navigation performance capability compliant with the criteria of the RVSM MASPS;
2. The operator has instituted procedures relating to continued airworthiness practices and programmes; and
3. The operator has instituted flight crew procedures and training for operation in EUR RVSM airspace.

The majority of civil aircraft manufactured since the 1990s have been constructed in accordance with an approved RVSM MASPS compliance method. Previous airworthiness certification against JAA TGL N°6 rev 1 is an acceptable means of compliance for the RVSM system.

The RVSM MASPS includes requirements for continued airworthiness approval and long-term ASE stability. Initial verification of the RVSM MASPS is considered part of the approval process. However, the final verification can only be made following confirmation that the continued airworthiness procedures are valid and ASE is stable.

All aircraft for which the RVSM MASPS has been verified using the same compliance method and which have similar height-keeping performance characteristics are considered to be in the same classification or monitoring group for performance evaluation. Aircraft with a
unique airframe and altimetry system fit are classified as non-group. ICAO Annex 6, Appendix 4 defines the statistical performance requirements that must be met by RVSM monitoring groups and individual non-group aircraft.

Individual airframes manufactured on the basis of a common compliance method (i.e. group aircraft) that has been evaluated for compliance with RVSM MASPS should not require additional performance evaluation prior to approval. However, authorities are still required to confirm that the initial certification is valid and to ensure that operator procedures for continued airworthiness and flight crew operations are correct before airworthiness or operational approval is granted.

The following should apply for an aircraft to be considered part of a monitoring group:

1. The aircraft should be constructed to the same type certificate (TC), TC amendment or supplementary TC;
2. Static source errors (SSE) and static source error corrections (SSEC) should be identical; and
3. The avionics installed on each aircraft should comply with the same specification or at least be verified as demonstrating equivalent performance.

Any aircraft that does not meet these requirements must be individually approved with particular emphasis on evaluation of the altimetry system error characteristics of the aircraft throughout the flight envelope.

Authorities should take additional steps to verify the ASE characteristics of derivative aircraft which have been ordered or modified for specific functions and which may include differences that prevent the aircraft from being included in an existing monitoring group. An aircraft originally classified as a group aircraft may need to be re-classified if it is subject to any kind of modification that changes the ASE characteristics. Modifications or design changes to derivative aircraft that will require a re-evaluation of the ASE characteristic include:

1. Additional external fittings that may alter the air flow over static ports or the attitude of the aircraft;
2. Changes that may affect the SSE, requiring a review of SSECs;
3. Changes to the flight envelope or weight characteristics; and
4. Changes to avionics hardware and/or software.

Procurement authorities should ensure that specifications for derivative aircraft clearly indicate whether the delivered aircraft are to be RVSM MASPS-compliant.

3.2 RVSM Approval

The RVSM approval process varies depending on whether the aircraft is a new build or already in service. For new builds, the manufacturer will submit to the competent authority in the State of manufacture the performance and analytical data supporting RVSM airworthiness approval of a defined build standard for approval. In the case of an aircraft already in service, the constructor will submit to the competent authority in the State of manufacture or State of registry for approval the performance and analytical data supporting RVSM airworthiness approval of a defined build standard. In all cases, it is necessary for
every authority issuing an RVSM approval to ensure that the initial type/derivative RVSM airworthiness approval has been completed.

If a one-off production run of a special variant is required, it is particularly important that the customer clearly indicates whether the variant is required to operate in RVSM airspace and which authority is to provide the initial airworthiness approval.

Before issuing an RVSM approval the competent authority should ensure that the RVSM approval data package is valid. As a minimum this package should contain:

1. A declaration of the aircraft RVSM MASPS compliance method and build standard, including the RVSM monitoring group to which the aircraft belongs (if any);
2. A definition of the RVSM flight envelope;
3. Performance and analytical data showing compliance with RVSM performance criteria;
4. Procedures to verify that all aircraft submitted for approval comply with RVSM criteria, including a reference to the applicable service bulletin (or equivalent) and amendments to the approved aircraft flight manual; and
5. The maintenance instructions to ensure continued airworthiness for RVSM approval.

All the requirements of the approval authority should be met after verification of all the elements of the RVSM approval data package before an RVSM approval is issued.

3.3 Performance Data

Initial performance data package

The RVSM approval data package should contain sufficient data to show compliance with the height-keeping performance criteria described in the CS-ACNS (Book 1 – Subpart E) and ICAO Annex 6, across the entire operational flight envelope.

AMC1 ACNS.E.RVSM.035 (e) describes four acceptable methods for precision flight calibration to quantify altimetry system performance. These are:

1. Precision tracking radar;
2. Trailing cone;
3. Pacer aircraft; and
4. Any other method acceptable to the competent authority.

The CS-ACNS – Book 2 – Subpart E – Appendix B provides examples of methods establishing the static source errors which is a component of the altimetry system error (ASE).

Performance monitoring

Independent height-monitoring systems exist for measuring height-keeping performance and estimating ASE. The European RMA operates 3 height monitoring units (Linz in Austria - 48°12’08”N, 014°17’35”E (near LNZ VOR), Nattenheim in Germany - 49°56’45”N, 006°33’25”E (near NTM VOR) and Geneva in Switzerland - 46°21’49”N, 005°55’34”E (near GVA VOR)), which use multilateration techniques to determine aircraft geometric height which is then compared to the geometric height of the flight level as estimated by computer models which process meteorological data supplied by the UK Meteorological Office.
The HMU systems are highly accurate but sensitive to external influences, particularly errors in meteorological forecasts and flight characteristics. The RMA conducts a number of quality control checks, both on the system itself and the height-keeping performance data produced. The HMU systems provide large amounts of height-keeping performance results, which are the primary source of data for the annual statistical safety assessment.

However, the RMA does not permit HMU data to be used instead of detailed performance or analytical data to support height-keeping performance for certification purposes\(^2\). The main reasons for this are:

1. An HMU result provides a snapshot of only one point in the flight envelope;
2. Aircraft flight configuration is unknown;
3. The HMU systems are not certified or calibrated for precision performance evaluation\(^3\); and
4. The airspace over the HMU systems is already restricted to RVSM-approved aircraft, although there are numerous examples of non-approved aircraft operating in the airspace for height-monitoring purposes prior to receiving RVSM approval.

3.4 State aircraft recommendations

RVSM technical and operational requirements are now fully covered by the current EASA regulatory system.

EC n°965/2012 Subpart D is provides the high level requirements which are binding.

\(^2\) Same conditions apply to the GPS monitoring unit (GMU)

\(^3\) Any errors introduced by external influences are considered minor and in most cases are compensated for; however, absolute HMU accuracy cannot be guaranteed when compared to calibrated systems specifically designed for this purpose.
Operational acceptable means of compliance (AMC) for RVSM are published in Part-SPA and technical certification and AMC for RVSM in CS-ACNS are non-binding.

![EASA Regulatory System](image)

Figure 2 EASA regulatory system

Some State aircraft may fulfill the performance requirements but their system does not fulfill some specific aircraft system requirements set out in the civil regulation.

For example, modern military fighters are fitted with a type of altimetry system, often using multiple static and dynamic pressure sources connected to redundant pressure calculators, which is of a different nature from the civil commercial aircraft independent altitude measurement systems. The apparent lack of redundancy may be a safety issue if it creates a non mitigated risk. Moreover, their height-measuring performance may be strongly influenced by the aircraft external carriage configuration, which may limit the approved aircraft configurations.

In such cases, the operator must prove that the certified altitude measurement system is compliant with SPA.RVSM.110 (a) (level of the Implementing Rule, binding) and it must be specified by a certification specification different from the CS-ACNS (non-binding): since the RVSM technical MASPS are included in the CS-ACNS, the military authorities willing to issue an RVSM approval for such aircraft types have to demonstrate that the technical fit of the aircraft is fully compliant with the ICAO provisions and that this aircraft type does not hamper the level of safety in the RVSM airspace. In that case, it is recommended to publish a dedicated RVSM approval data package, as defined in the CS-ACNS – Book 2 – AMC1 ACNS.A.GEN.010 (b) section.

It also must be noted that RVSM approval is not restricted to a specific region or airspace as the aircraft requirements are global. Aircraft that have been approved for RVSM can operate in RVSM airspace worldwide. For North America, as well as for European aircraft, the Federal Aviation Administration (FAA) developed the Minimum Aircraft Systems Performance Specifications (MASPS) Document 91-RVSM, “Interim Guidance Material on the Approval of
Operators/Aircraft for RVSM Operations." Subsequently, with the implementation of domestic RVSM (DRVSM) within the U.S. National Airspace System (NAS), the FAA and U.S. Department of Defence (DoD) provided recommendations for improvements and changes to RVSM separation minima procedures. The first recommendation which was accepted by the FAA was to agree to recognize DoD aircraft equipped with a single RVSM compliant altitude measurement system for DRVSM. The second recommendation which was also accepted by the FAA, FAA Notice 7110.406 during May 2005, was to provide RVSM separation to formation flights comprised of only RVSM compliant aircraft when flying in the NAS.

4. GUIDANCE

4.1 Coordination with the EUR RMA

State aircraft operators willing to fly RVSM operations with the 1000 ft vertical separation minimum in RVSM airspace must comply with a set of basic requirements in order to maintain the level of safety in RVSM airspace.4

SA-RVSM-REQ1: State aircraft operators shall have RVSM operational approval from the competent authority to fly RVSM operations. This approval shall be based on evidence from the competent technical authority of the compliance to the RVSM requirements.

SA-RVSM-REQ2: State aircraft operators should provide the RVSM operational approval data sheet (Appendix A, table A-1) to the EUR RMA prior to RVSM operations.

SA-RVSM-REQ3: State aircraft operators shall ensure consistency between the RVSM approval status of the aircraft and the flight plan filed by the crew.

SA-RVSM-REQ4: State aircraft operators should actively participate in the EUR RMA monitoring programme and comply with its requirements.

SA-RVSM-REQ5: State aircraft operators should nominate a national RVSM coordination officer5 to the EUR RMA and to the Civil-Military ATM Coordination Division (DSS/CMAC) in EUROCONTROL HQ to resolve monitoring or safety issues that may occur while operating in RVSM airspace. EUR RMA FORM 1 (Appendix C) is to be used to nominate this coordinating officer.

SA-RVSM-REQ6: For RVSM operations, the aircraft address should not be different than the one provided to the EUR RMA. That means that within RVSM airspace when operating GAT/IFR the aircraft addresses should not rotate6 and should remain unique and unchanged for each aircraft.

4 Without prejudice to the possibility to fly within RVSM airspace with 2000 ft separation, if operating with exemption status.
5 The State authorities are requested to nominate as far as practicable a single RVSM coordination officer (RCO). If internal national organisation requires more than one RCO, the EUR RMA and CMAC must be informed of the list of aircraft or aircraft types each RCO is responsible for.
6 State aircraft authorities sometimes rotate aircraft addresses for operational reasons, but because of the role of the aircraft addresses in the statistical accuracy of the RVSM monitoring function, it is expected to meet as much as practicable Annex 10 volume III - Appendix to chapter 9 - 5.2 c) SARPS.
The following sections provide guidance material to help the military to comply with the requirements described above.

4.1.1 RVSM Approval Database

ICAO EANPG Doc. 009, “European guidelines for the implementation of RVSM”, requires State authorities to maintain a database of RVSM approvals. To reduce workload and enable RMA resources to be most efficiently utilised, it is important that all airworthiness authorities ensure that this database is regularly updated and available to the RMA.

As far as practically possible, approval databases should be centralised, reducing the amount of communication between RMA and approval authorities.

To minimise workload and enable the RMA to best support the States, relevant authorities should ensure that valid contact information and regular updates to approval records are provided to the RMA. This includes de-registrations and withdrawals of approval as well as new approvals. EUR RMS Form 2 (Appendix D) must be filled in and sent to the EUR RMA to declare approved aircraft prior to RVSM operations.

In relation to new aircraft types or variants, airworthiness authorities should provide details of any new RVSM MASPS compliance methods, including STCs and service bulletins, to the RMA so that any adjustments required can be made to the monitoring group configuration. If it is not possible to determine the compliance method and hence the correct monitoring group from the approval data, the aircraft must be classified as non-group and subject to mandatory height monitoring every 2 years.

4.1.2 Monitoring Programme and Maintenance of the RVSM Approval Database

The monitoring programme defines three categories with two different monitoring approval methods and requirements.

As described in EUR Doc 009, a newly approved aircraft type starts in category 2 and may be upgraded to category 1 by a decision of the EUR RMA once a sufficient number of aircraft have been monitored and have generated a high level of confidence in the group monitoring data.

MONITORING IS REQUIRED IN ACCORDANCE WITH THIS TABLE

<table>
<thead>
<tr>
<th>Category</th>
<th>Minimum operator monitoring for each aircraft group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Group approved: monitoring data indicates compliance with the RVSM MASPS</td>
<td>A minimum of 10% or two airframes from each fleet of an operator to be monitored, whichever is the greater</td>
</tr>
<tr>
<td>2 Group approved: insufficient monitoring data on approved aircraft</td>
<td>60% of airframes (round up if fractional) from each fleet of an operator or individual monitoring</td>
</tr>
<tr>
<td>3 Non-group</td>
<td>100% of aircraft shall be monitored</td>
</tr>
</tbody>
</table>

NOTE: MONITORING PRIOR TO THE ISSUE OF RVSM APPROVAL IS NOT A REQUIREMENT

For questions regarding categories, contact EUR RMA at EurRMA.Support@eurocontrol.int
Different monitoring requirements must be met for RVSM-approved aircraft depending on their category defined in the previous table.

<table>
<thead>
<tr>
<th>Approval method</th>
<th>Monitoring requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-approved aircraft</td>
<td>Every 2 years or 1000 flying hours, whichever is the greater</td>
</tr>
<tr>
<td>Non-group approved aircraft</td>
<td>Every 2 years</td>
</tr>
</tbody>
</table>

The Competent Authority for the State aircraft should ensure that appropriate action is taken when informed of a non-approved aircraft in the RVSM airspace by the RMA. This should include an initial acknowledgement followed by confirmation of the approval status of the aircraft in question. If the aircraft holds a valid approval, then this information, including date of issue of the RVSM approval, should be provided to the RMA as soon as possible so that the database of approvals can be updated; no further action would then be required.

If an aircraft is found to be operating without an approval, the operator should immediately be instructed to stop flying RVSM. An investigation should be initiated by the competent authority into the circumstances surrounding the breach of flight rules. Any action resulting from the investigation is the responsibility of the approval authority. The RMA includes a summary report regarding operations by non-approved aircraft in the annual safety assessment.

Figure 4 shows a flowchart of recommended action upon receipt of a report of possible non-approved aircraft operating with 1000 ft vertical separation in RVSM airspace.

Annex A contains a description of the RVSM approval information required by an RMA.
Figure 3: Action upon receipt of a report of non-approved aircraft in EUR RVSM airspace
4.2 Flight Planning

4.2.1 General Procedures

All flight planning requirements for the European RVSM region are contained in the European Regional Supplementary Procedures, ICAO Doc. 7030/5. Any changes to this document will take precedence over the present guidelines.

Flight planning for RVSM airspace must be clear and unequivocal:

1) Only operators and aircraft with a valid RVSM approval may submit a flight plan requesting 1000 ft vertical separation in RVSM airspace.

2) No formation flights are permitted to operate with 1000 ft vertical separation in RVSM airspace.

3) State aircraft which are not RVSM-compliant may file a flight plan to fly inside RVSM airspace with 2000 ft vertical separation with exemption status.

4.2.2 Flight Planning for State Aircraft

State aircraft filing GAT flight plans in RVSM airspace fall into one of three categories: RVSM-approved, non-RVSM approved and formation flights.

RVSM-Approved State Aircraft:
Operators of RVSM-approved aircraft must list a “W” in item 10 of the ICAO flight plan, irrespective of the requested flight level. Operators submitting repeat flight plans must include a “W” in item 10 of the flight plan irrespective of the requested flight level.

Non-RVSM Approved State Aircraft:
Operators of non-RVSM approved aircraft wishing to operate in RVSM airspace must submit an “M” in item 8 of the ICAO flight plan, and in addition “STS/NONRVSM” in item 18. No “W” needs to be submitted. These aircraft will be provided with 2000 ft vertical separation.

State Formation Flights:
Regardless of the RVSM approval status of any individual aircraft, no “W” needs to be submitted for any flight plan relating to formation flights.

A simple flowchart indicating the flight planning and separation minima for State aircraft is contained in Figure 5.
4.3 Altimetry System Error (ASE)

Altimetry system error is the difference between the altitude indicated by the altimeter display assuming a correct altimeter barometric setting and the pressure altitude corresponding to the undisturbed ambient pressure. Errors in measuring the ambient air pressure or converting this into the altitude readout are major sources of ASE.

The major concern with ASE is that it is in most circumstances invisible to pilots, ground controllers and other aircraft (TCAS), so that any increased risk due to ASE cannot be mitigated operationally. To complicate matters, ASE is extremely difficult to measure in an operational environment.

4.3.1 Causes of ASE

Altimetry system error is extensively described in CS-ACNS – Book 2 – Subpart E – Appendix A. It is suggested to refer to that section to know more about the causes of ASE.
Nonetheless, investigations conducted by the RMA in recent years have highlighted a number of issues for airworthiness authorities. The issues of greatest concern to the RMA experts are undetected rapid deterioration of “no life limit” components, particularly modern integrated pitot/static probes, and the rapid rate of deterioration associated with them (up to 50 ft per month), and the inability of some in situ checks to adequately identify faults.

4.3.2 Resolving ASE Problems

The RMA was associated with more than 150 individual aircraft investigations between 2007 and 2010. It is now standard procedure to issue a checklist for operators and regulators to follow when trying to identify why an aircraft has an excessive ASE.

Not all of the following items will be required, although investigators should be aware that there may be more than one contributory factor:

1) Is the approved maintenance programme compliant with the requirements to maintain RVSM MASPS?
2) Are the aircraft minimum equipment list (MEL) and master minimum equipment list (MMEL) RVSM-compliant?
3) Basic checks to ensure that an approved RVSM MASPS compliance method has been incorporated into the aircraft. The compliance method may be applicable to a single airframe or to a group of aircraft having the same or similar performance characteristics and equipment fit. MASPS compliance documents are typically service bulletins, supplemental type certificates, aircraft service changes, type certification compliant or similar regulator approved documents. MASPS compliance methods have been formulated to be in line with the requirements contained in EASA CS-ACNS or FAA AC91 RVSM.
4) Is the data package submitted by the operator in full compliance with the requirements of in EASA CS-ACNS or the equivalent FAA document, AC 91-85, Authorization of Aircraft and Operators for Flight in RVSM?
5) Has the airframe been modified since it was made MASPS-compliant?
6) Are there added external devices in RVSM-sensitive areas which will change the airflow, resulting in high/low ASE?
7) Is there a MASPS compliance document in the maintenance records along with a correct reference number?
8) Have approved continuous maintenance programme requirements been logged into the maintenance records?
9) Have all technical log items been resolved and all required SBs applied?
10) Is the paint scheme to the required RVSM specifications?
11) Have decals or company logos been applied to “sterile” areas of the fuselage?
12) Are the pitot heads within the allowable tolerance range? (Requires test gauges).
13) Is the radome correctly seated and secured to OEM standards?
14) Do AoA vanes have correct and free movement?
15) Has a pitot static leak test been done?
16) Are the static vents rigged to the required settings?
17) Does the FMS have the correct software version installed?
APPENDIX A – RMA RVSM APPROVAL DATA REQUIREMENTS

Table A-1 describes the data which an RVSM approval authority is required to submit for an RMA to include the RVSM approval in the database of European approved aircraft.

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Required</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>Date of registration</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Mandatory</td>
<td>ICAO type designator</td>
</tr>
<tr>
<td>Variant</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>Series</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>Serial No.</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>Aircraft address / 24-bit ICAO address</td>
<td>Mandatory</td>
<td>In hexadecimal format Note: For tracking efficiency, the aircraft address should remain the same for each airframe.</td>
</tr>
<tr>
<td>RVSM MASPS</td>
<td>Mandatory</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Compliance method</td>
<td>Mandatory</td>
<td>TC, STC or SB reference</td>
</tr>
<tr>
<td>RVSM-approved</td>
<td>Recommended</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Date of RVSM approval</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>Date of expiry of RVSM approval</td>
<td>Mandatory</td>
<td>If appropriate</td>
</tr>
<tr>
<td>Operator</td>
<td>Mandatory</td>
<td>Name and 3-letter ICAO code, if appropriate</td>
</tr>
<tr>
<td>Build year</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>State of registry</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>RVSM approval authority</td>
<td>Recommended</td>
<td></td>
</tr>
</tbody>
</table>

Table A-1: Information on individual aircraft RVSM approval to be submitted to a RMA
APPENDIX B – GENERAL REQUIREMENTS FOR RVSM OPERATIONS

1 – CERTIFICATION PHASE
- Technical work: compliance with RVSM MASPS, airworthiness issues
- Crew proficiency: education, procedures and training
- Authority: issuing of RVSM approvals, organisation of contacts with EUR RMA (PoCs)

2 – RVSM OPERATIONS PHASE
- Authority:
 - provide RVSM approvals to RMA, update list of approved aircraft
 - provide relevant information to EUR RMA as described in Fig. 1
- Operator:
 - participate in monitoring programme,
 - organise flights over HMUs or use GMU
 - collaborate with EUR RMA whenever necessary
 - maintain crew proficiency
 - maintain list of RVSM-approved aircraft / submit list to EUR RMA
 - maintain aircraft airworthiness in line with maintenance programme
- Crews:
 - file flight plans as described in Fig. 2
 - follow RVSM procedures
APPENDIX C – EUR RMA F1

CONTACT DETAILS FOR MATTERS RELATING TO RVSM APPROVALS

This form should be used to supply the contact information of people/positions responsible for issuing RVSM approvals, or who are responsible for dealing with requests for RVSM approvals. This form should be used by States accredited to the EUR RMA but may also be used by operators of aircraft which have received RVSM approval from a State accredited to the EUR RMA.

A new form should be submitted whenever any of the required information changes. Where there are multiple contacts, please submit separate forms for each one. (PLEASE USE BLOCK LETTERS.)

Classification of Originator: (†delete as appropriate) OPERATOR / STATE APPROVAL AUTHORITY

Name of State or Operator

Post/Position

Name:

Address:

Telephone Number:

E-mail:

Fax Number:

Please send completed forms to the EUR RMA at the following e-mail address or fax number:

E-mail EURRMA.support@eurocontrol.int
Fax +32 27 29 51 85

† The EUR RMA does not accept approval information directly from operators without supporting evidence from the appropriate State authority.
INSTRUCTIONS FOR COMPLETING FORM RMA F1

1 States: Enter full name or one- or two-letter ICAO identifier as contained in the latest version of ICAO Doc. 7910.
 Operators: Enter the full operator name as contained in ICAO Doc. 8585 or full legal name.

2 Indicate the full job title, unit.
APPENDIX D – EUR RMA F2

RECORD OF APPROVAL TO OPERATE IN RVSM AIRSPACE

FOR USE BY APPROVAL-ISSUING AUTHORITIES ONLY

This form must be completed and returned to the regional monitoring agency to which the State is accredited. For a full list of State/RMA accreditations, please see ICAO Doc. 9937. For States accredited to the EUR RMA, please forward this form to the address below. (PLEASE USE BLOCK LETTERS.)

State of Registry

Name of Operator

3-Letter ICAO Operator Code

State of Operator

Aircraft type

Aircraft series

Manufacturer’s serial number

Registration mark

Date of registry

Aircraft address / 24-bit ICAO address

Date of RVSM approval

Date of expiry (if applicable)

RVSM Airworthiness Compliance Ref.

Approvals from States accredited to the EUR RMA should be sent to:

E-mail EURRMA.support@eurocontrol.int
Fax +32 27 29 51 85
END OF DOCUMENT