ICAO ACR-PCR Procedure of Reporting Airport Pavement Strength
Introduction to FAA AC 150/5335-5D

Presented to: Fourth Meeting of the Asia/Pacific Aerodrome Design and Operations Task Force (AP-ADO/TF/4 Hybrid)

By: Harold Honey, P.E., PMP
 Jeff Crislip

Date: 11 January 2023
Introductions

• FAA Office of Airports, Airport Engineering Division (AAS-100)
• Engineering, Design and Construction Branch (AAS-110)

The FAA develops engineering, design, and construction standards for all civil airports, heliports, and seaplane bases. This includes standards for airfield pavement; airport lighting, marking, signs, and other visual aids; safety during construction; surveying and GIS data; deicing, ARFF and other facilities; bird radar and foreign object detection systems; and more.

• Airfield Pavement Engineering Subject Matter Experts
 – Harold Honey, P.E., PMP
 – Jeffrey Crislip
 – Harold Muniz-Ruiz
Pavement Strength Reporting Background

- Prior to 1981 there were many strength reporting methods
 - FAA used Maximum Allowable Weight Method (MAW)
 - UK used Load Classification Number/Group Methods (LCN/LCG)
 - Other methods used by various international agencies

- In late 1970’s, ICAO recognized the need for a standardized method of reporting pavement strength to support increasing international traffic

- ICAO adopted the ACN-PCN Method of reporting airport pavement strength in 1981
ACN-PCN System

Pavement Type
R = rigid, concrete
F = flexible, asphalt

Evaluation Method
T = technical
U = type of using aircraft

Subgrade Strength
A = high, ≥ 13 CBR, ≥ 120 K
B = med, > 8 CBR, > 60 K
C = low, > 4 CBR, > 25 K
D = ultra low, ≤ 4 CBR, ≤ 25 K

Tire Pressure
W = high, no limit
X = med, ≤ 1.75 MPa
Y = low, ≤ 1.25 MPa
Z = very low, ≤ 0.5 MPa
ACR-PCR System

• ICAO Aerodrome Pavement Expert Group (APEG)
 – ACN-PCN Task Force established in 2011 to investigate an update to method
 – Participants included Airbus, Boeing, ACI World, FAA, DGAC (France), others
 – Developed ACR-PCR Method (Aircraft Classification Rating – Pavement Classification Rating)

• Same concepts as ACN-PCN method, but:
 – Fully layered elastic-based analysis (ACN-PCN largely CBR/Westergaard)
 – Uses uniform standard subgrade categories for flexible and rigid pavement
 – NO alpha factor, layer equivalency factors, top-of-base k, etc.
 • If you don’t know what these are don’t worry, they allowed the method to work with various pavement structures and complex gear configurations
ACR-PCR Definitions

• Aircraft Classification Rating (ACR)
 – A number that expresses the relative effect of an aircraft at a given configuration on a pavement structure for a specified standard subgrade strength.

• Pavement Classification Rating (PCR)
 – A number that expresses the load-carrying capacity of a pavement for unrestricted operations

• System Methodology
 – The ACR-PCR system is structured so a pavement with a particular PCR value can support an aircraft that has an ACR value equal to or less than the pavement’s PCR. This is possible because ACR and PCR values are computed using the same technical basis.

ACR ≤ PCR
ICAO ACR-PCR Implementation

• Amendment 15 to Annex 14, Volume 1 to the Convention on International Civil Aviation
 – Adopted by the Council at the fourth meeting of its 219th session on 9 March 2020
 – Effective 20 July 2020
 – Applicable 28 November 2024 for provisions related to pavement rating

 – Provides detailed information on ACR-PCR method
 – State Practices will be updated when ACR-PCR becomes applicable in 2024
ACR-PCR System

Pavement Type
- R = rigid, concrete
- F = flexible, asphalt

ACR Components

Subgrade Strength
- A = high, > 150 MPa (E)
- B = med, > 100 MPa (E)
- C = low, > 60 MPa (E)
- D = ultra low, ≤ 60 MPa (E)

Evaluation Method
- T = technical
- U = type of using aircraft

Tire Pressure
- W = high, no limit
- X = med, ≤ 254 psi
- Y = low, ≤ 181 psi
- Z = very low, ≤ 73 psi
How are ACRs Reported?

• The official ACRs for an aircraft are published by the aircraft manufacturer:
 – Boeing and Airbus are updating their aircraft characteristics documents and software to incorporate ACR curves
 – ACRs are unique to an aircraft at a specified weight. Most manufacturers provide an ACR curve to determine ACR at specific weight desired

• ICAO ACR Computer Programme has been developed to report ACRs
 – Incorporates aircraft characteristic data provided by aircraft manufacturers
 – Most aircraft are in the database, but some manufacturers have not provided the FAA with the information needed to incorporate some aircraft
 – The manufacturer’s ACR data is official data so if there is discrepancy with ICAO ACR programme the manufacturer’s data will control
Aircraft Manufacturer ACR Data

737 MAX

Airplane Characteristics for Airport Planning

Revision Record

<table>
<thead>
<tr>
<th>Revision Letter</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision Date</td>
<td>May 2022</td>
</tr>
</tbody>
</table>
| Changes in This Revision | Section 2.0 Updated Usable Cargo Volume, Minor Updates
Section 6.0 Updated Jet Engine Exhaust Contour Conditions, Inlet Hazard Areas
Section 7.0 Updated ACR/PCR Information |

<table>
<thead>
<tr>
<th>AIRCRAFT AIRCRAFT</th>
<th>MAXIMUM TAXI WEIGHT</th>
<th>MINIMUM WEIGHT*1</th>
<th>LOAD ON ONE MAIN GEAR LEG (%)</th>
<th>TIRE PRESSURE</th>
<th>ACR FOR RIGID PAVEMENT SUBGRADES</th>
<th>ACR FOR FLEXIBLE PAVEMENT SUBGRADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>737-7</td>
<td>177,500 (81,512)</td>
<td>95,000 (43,091)</td>
<td>46.96</td>
<td>205 (1.41)</td>
<td>511 533 549 565 384 417 466 517</td>
<td></td>
</tr>
<tr>
<td>737-8 / -8-200 / BBJ MAX 8</td>
<td>182,700 (82,871)</td>
<td>95,000 (43,091)</td>
<td>46.87</td>
<td>212 (1.46)</td>
<td>533 554 570 586 399 434 474 537</td>
<td></td>
</tr>
<tr>
<td>737-9 / BBJ MAX P</td>
<td>195,200 (88,541)</td>
<td>95,000 (43,091)</td>
<td>47.07</td>
<td>230 (1.59)</td>
<td>593 614 629 645 443 481 526 568</td>
<td></td>
</tr>
<tr>
<td>737-10</td>
<td>198,400 (89,992)</td>
<td>95,000 (43,091)</td>
<td>47.22</td>
<td>235 (1.62)</td>
<td>609 631 645 661 455 494 540 614</td>
<td></td>
</tr>
</tbody>
</table>

*1 Minimum weight used solely as a baseline for ACR curve generation.
ICAO ACR 1.3

- FAA Developed Program
- Calculates standard ACRs for aircraft
 - Remember Manufacturer Data is official
- Core library can be linked to other programs that compute PCR
- Developed using FAA LEAF computer programme

http://www.airporttech.tc.faa.gov/Products/Airport-Pavement-Software-Programs/Airport-Software-Detail/ArtMID/3708/ArticleID/2838/ICAO-ACR-13
PCR Computation Procedure

• The Aerodrome Design Manual provides a model procedure for PCR determination and publication, using the CDF Concept.

• States may develop their own methods for PCR determination, consistent with the overall parameters of the ACR-PCR Method

• CDF – Cumulative Damage Factor Concept
 – The CDF is the amount of structural fatigue life of a pavement which has been used up
 – It is expressed as the ratio of applied load repetitions to allowable load repetitions to failure

\[
\text{CDF} = \frac{\text{Applied \ coverages}}{\text{Coverages to failure}}
\]

Note 1.—When CDF = 1, the pavement subgrade will have used all of its fatigue life.

Note 2.—When CDF < 1, the pavement subgrade will have some remaining life and the value of CDF will give the fraction of the life used.

Note 3.—When CDF > 1, all of the fatigue life will have been used and the pavement subgrade will have failed.
Determination of PCR – Technical Method (T)

• The technical evaluation should be used when pavement characteristics and aircraft mix are consistently known and documented.

• The PCR procedure does not dictate the use of a preferred subgrade failure/damage model nor a method for treating the multi-axle loading.

• Therefore, States can use their existing pavement design and evaluation methodologies.
 – FAA has incorporated PCR computation into its FAARFIELD 2.0 software
 – French DGAC has incorporated PCR computation into its Alize-Aeronautics software

• The use of the initial pavement design parameters will ensure consistency between what the actual pavement is able to withstand and the PCR assignment.
PCR Procedure – Using Aircraft Method (U)

- When, for economic or other reasons a technical evaluation is not feasible, evaluation can be based on experience with “using aircraft”.
- A pavement satisfactorily support aircraft using it, can accept other aircraft if they are no more demanding than the using aircraft.
- Inaccuracies:
 - Accuracy depends on having records of past aircraft traffic
 - Significant over-estimation of the pavement capacity can result if an excessively damaging aircraft, which uses the pavement infrequently, is used to determine PCR.
 - Significant underestimation of the pavement capacity can lead to uneconomic use of the pavement by preventing acceptable traffic
- Whenever possible, reported pavement strength should be based on a “technical evaluation”.

Federal Aviation Administration
AC 150/5335-5D Standardized Method of Reporting Airport Pavement Strength - PCR

- Adopts FAA standard method for reporting pavement strength using ICAO ACR-PCR method
- Establishes September 30, 2024 deadline for Commercial Service Airports to report PCR
- Provides guidance on FAA procedures to compute PCR using FAARFIELD 2.0 software
- Establishes procedures for reporting PCR
FAARFIELD 2.0 PCR Module

ICAO ACR is the backbone of FAARFIELD 2.0 PCR computations
Reporting Pavement Strength in Airport Master Record

RUNWAY DATA

<table>
<thead>
<tr>
<th></th>
<th>12L/30R</th>
<th>07/25</th>
<th>12R/30L</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 RUNWAY IDENT:</td>
<td>4,199</td>
<td>5,005</td>
<td>5,000</td>
</tr>
<tr>
<td>31 LENGTH:</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>32 WIDTH:</td>
<td>ASPH-G</td>
<td>ASPH-G</td>
<td>ASPH-G</td>
</tr>
<tr>
<td>33 SURF TYPE-COND:</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>34 SURF TREATMENT:</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>35 GROSS WT:</td>
<td>2D</td>
<td>2D</td>
<td>2D/2DS</td>
</tr>
<tr>
<td>36 (IN THSDS)</td>
<td>2D/2DS</td>
<td>2D/2DS</td>
<td>2D/2DS</td>
</tr>
<tr>
<td>37</td>
<td>30/F/C/X/T (PCN)</td>
<td>58/F/C/X/T (PCN)</td>
<td>48/F/C/X/T (PCN)</td>
</tr>
</tbody>
</table>

RUNWAY DATA

<table>
<thead>
<tr>
<th></th>
<th>H2</th>
<th>H1</th>
<th>04/22</th>
<th>13/31</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 RUNWAY IDENT:</td>
<td>60</td>
<td>60</td>
<td>7,300</td>
<td>7,299</td>
</tr>
<tr>
<td>31 LENGTH:</td>
<td>60</td>
<td>60</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>32 WIDTH:</td>
<td>CONC-G</td>
<td>CONC-G</td>
<td>ASPH-G</td>
<td>ASPH-F</td>
</tr>
<tr>
<td>33 SURF TYPE-COND:</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>34 SURF TREATMENT:</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>35 GROSS WT:</td>
<td>2D</td>
<td>2D</td>
<td>2D/2DS</td>
<td>2D/2DS</td>
</tr>
<tr>
<td>36 (IN THSDS)</td>
<td>2D/2DS</td>
<td>2D/2DS</td>
<td>2D/2DS</td>
<td>2D/2DS</td>
</tr>
<tr>
<td>37</td>
<td>63/F/C/W/T (PCR)</td>
<td>63/F/C/W/T (PCR)</td>
<td>63/F/C/W/T (PCR)</td>
<td></td>
</tr>
</tbody>
</table>
How is the FAA Implementing ACR-PCR

• Release of AC 150/5335-5D established ACR-PCR as the new FAA standard method for reporting airport pavement strength
 – Allows projects funded under federal grant assistance programs to include PCR development into project scopes
 – Establishes new standard which Part 139 commercial service airports must adhere to

• Establishes September 30, 2024 as deadline after which all Part 139 certificated airports shall report PCRs in the AMR
 – During transition PCNs and PCRs will both be included
 – A single runway cannot report both PCN and PCR

• At this time the FAA has complied with the implementation of ICAO ACR-PCR as the new standard practice of the United States for reporting pavement strength
 – No difference exist between the FAA PCR computation procedure and ICAO
When Does the FAA Recommend Developing a PCR?

- **When pavement structure changes**
 - New construction
 - Structural capacity increased (i.e. overlay)
 - Partial or full-depth reconstruction

- **When aircraft fleet mix changes**
 - New aircraft operations added (recommended only when regular operations)
 - Significant increase in operations by an aircraft
 - Change in aircraft variant (i.e. 777-200 to 777X)

- **Periodically throughout pavement life**
 - Update as part of pavement management program
 - If premature structural distresses observed
Determining PCR during Design

• A PCR should be a part of design scope
 – When a new pavement is constructed
 – When there is a change in the structural capacity of the pavement (i.e. structural overlay)
 – A pavement is reconstructed either partial depth or full depth
 – Not typically part of a repair project, but could be considered if there is sufficient data to compute PCR without significant scope increase.

• Draft PCR should be included as part of the Engineer’s Design Report.
• Final PCR should be computed as part of as-built development.
 – If as-built structure is same as design PCR can be validated.

• For runways Airport Sponsor must update PCR and maximum allowable weights in AMR prior to opening runway for operations
PCR for Pavement Management

• Structural evaluation for pavement management focused on life remaining and not pavement strength reporting
• PCR can be developed at same time since it uses the same data as life remaining analysis
 – Typically, a PCR in pavement management will use material strengths that are computed through non-destructive testing.
 – Traffic should look at 20-year projection, not just life remaining.
• Typical interval for structural evaluation is 8-12 years
• It is not logical to develop PCRs for all pavement at an airport
 – Runway pavement strengths must be reported on all paved runways
 – Taxiways should be assessed based on usage and projected traffic
 – Aprons should be assessed based on aircraft that can access the pavement and usage
Questions?

FAA Airport Safety & Standards
Airport Engineering Division
Design and Construction Branch (AAS-110)

Jeff Crislip
Jeffrey.d.crislip@faa.gov
(202) 267-9373

Harold Honey, P.E., PMP
Harold.honey@faa.gov
(202) 267-4689