

IDCAS Workshop - SP/3

Ionospheric effects on GBAS and mitigation techniques

Susumu Saito Electronic Navigation Research Institute, Japan

Outline

- Outline of GBAS
- Ionospheric effects on GBAS
 - Ionospheric delay
 - Ionospheric scintillation
- * Examples of Ionospheric anomalies that may impact GBAS
 - SED
 - Plasma bubble
 - Equatorial anomaly
- Mitigation of lonospheric effects
 - Nominal ionosphere
 - Anomalous ionosphere
- Characterization of the lonosphere
 - Ionospheric threat model
 - For better/optimized ionospheric characterization
- * Summary

- Augmentation information is generated for each satellite based on observations at ground reference stations at an airport.
- Airplane perform positioning with the augmentation information.
- Service area is about 40 km around the airport

Ionospheric anomalies preventing advanced use of GNSS

Ionospheric delay gradient

- Source of differential correction error
 - Undetectable by reference station: integrity risk
 - Make countermeasure to reduce the probability of the risk less than the limit. (Additional monitors, screening of potentially dangerous satellite geometry, etc.)
 - Availability may be degraded as a result of such countermeasures.
- Small-scale ionospheric irregularities
 - Scintillation resulting in degraded measurements and satellite lock-off
 - Integrity risk is unlikely, but degrades availability

- Different errors between ground reference stations and airplanes result in differential correction error.
- Local spatial gradient in ionospheric delay can be an important error source.

Carrier-smoothing

- Noisy pseudo-range measurements are smoothed with an aid of carrier-phase variation.
- Error accumulates because of opposite polarity (pseudo-range delays in the ionosphere while carrier-phase advances) when ionospheric gradient exists.

Scintillation and GBAS

- Power and phase of received signals change rapidly.
- Degradation of measurements
 - enhanced error
- Loss-of-lock of satellite signals
 - degradation of geometry and enhanced error
- However, scintillation would not generate undetected error.
 - Less important for integrity risk, though availability would be affected.

Storm enhanced density

- Plasma bubble
- Equatorial anomaly

Storm enhanced density

- Extreme ionospheric density enhancement asociated with severe magnetic storm
- Mid- to high latitude phenomenon
- * Accompany very steep ionospheric gradient
- Relatively rare phenomenon

Impact of SED

- Ionospheric delay gradient of 412 mm/km has been observed.
- * Amplitude of the delay change is more than 20 m
- Miss-detection of SED would result in serious errors
- Since GBAS uses satellites with elevation angle down to 5°, SEDs should be considered even in low latitude region.

Plasma bubble

Vertical TEC variation over Japan 21:25:30 JST on 7 April 2002

ENR

- Ionospheric density depletion elongated in the north-south direction
- Accompany very steep ionospheric gradient and scintillation
- Frequently occur after sunset in high solar activity periods
- In the Asia-Pacific region, higher occurrences are observed during equinox seasons (March-April and September-October)

[ICAO NSP Report on Ionospheric effects on GNSS,2006]

Impact of plasma bubbles

- Gradients of 100 200 mm/km have been often observed.
- Miss-detection would results in serious errors.
- Scintillation would degrade GBAS performance.
- * Plasma bubbles have not been well studied in terms of gradient.

Equatorial anomaly

- Large-scale ionospheric density enhancement around ±15° magnetic latitude
- Gradients are relatively small, but must be considered as a background ionospheric variability

to support GNSS implementation, Bangkok, 5-6 May 2011

Mitigation of ionospheric impacts

- Nominal ionosphere
 - Background ionospheric fluctuations, always exists
 - Covered by protection levels:
 - the signal-in-space upper confidence bounds on the error in the position relative to the GBAS reference point
- Anomalous ionosphere
 - Disturbed ionosphere, not always exists but potentially dangerous
 - Detected or prescreened, and excluded so that the aircraft will not use the misleading information

Protection level in normal condition

- Kffmd: the multiplier derived from the probability of fault-free missed detection
- * s_vert: the partial derivative of position error in the vertical direction with respect to pseudo-range error
- σ_{vig}: the standard deviation of a normal distribution associated with the residual ionospheric uncertainty (in vertical) due to spatial decorrelation (broadcast in the GBAS Type-2 message)
- F_{PP}: Slant factor

Anomalous ionosphere detection/ prescreening

- Code-carrier divergence (CCD)
 - Detect difference in variations in pseudo-range measurement and carrier-phase measurement
- Geometry screening
 - Screen out potentially dangerous satellite geometries by inflating GBAS correction parameters
- Ionospheric field monitor
 - Additional monitoring receiver near threshold to detect spatial gradient
- Absolute gradient monitor
 - Spatial gradient monitoring between reference stations (for GAST-D)
- Dual Solution Ionospheric Gradient Monitoring Algorithm (DSIGMA)
 - Airborne monitoring using two different smoothing time (for GAST-D)

- * IFM station is placed closer to the threshold than ref. stations.
- IFM monitors spatial gradient and reduce a maximum potential range error.
- Prototype GBAS of ENRI at Osaka-Kansai airport adopts IFM.

ENR Ionospheric monitors and characterization of the ionosphere

- Ionospheric monitors are necessary to protect the aircraft from hazardous conditions
- * Too conservative detection criteria degrade availability
- In designing appropriate monitors that satisfy integrity and availability requirements, proper ionospheric characterization is necessary
 - How large the gradient can be
 - How large the total delay difference can be
 - How fast the gradient can move
 - How often such anomalies can occur

Characterization of the ionosphere

- * Characterization of the ionosphere is necessary to design a system in such a way that the system is safe and available.
- Ionospheric threat model characterizes the behavior of the ionosphere and defines the range of parameters that should be taken into account in designing a GBAS.
- Two aspects, nominal and anomalous ionospheric conditions
- Nominal ionosphere
 - Background ionospheric fluctuations, always exists
- Anomalous ionosphere
 - Disturbed ionosphere, not always exists but potentially dangerous
- * Defining the ionospheric threat is a responsibility of each State.

Nominal ionosphere

- σ_{iono} should be determined
 to bound an observed
 occurrence distribution.
- Large number of observations with closely separated observing stations are necessary.

Anomalous ionosphere

- Anomalous ionosphere is not bounded by σ_{iono} for nominal conditions.
- Anomalous ionosphere should be detected by monitors and excluded.
- Necessary parameters are:
 - Gradient
 - Total delay amplitude,
 - Ppropagation velocity

Approaches to threat model

- Observation-based approach
 - shows some aspects of reality, but a number of data is necessary.
- Simulation-based approach
 - Arbitrary situations can be tested, but validation is necessary based-on observations

ENRI Necessary observations for ionospheric characterization

- Local ionospheric gradient is one of the most important parameter in GBAS
 - Data of gradients associated with plasma bubbles are missing
 - Background ionospheric variability is also necessary in each region
- Short baseline (10-20 km, comparable to the scale size of plasma bubble wall) measurements are required.
- Wide-area (background) observations are necessary not only to characterize nominal ionosphere but also to understand the cause of the gradients.

ENRI ENRI's activities in ionospheric obsevation

- I. Short baseline ionosphere gradient/scintillation system in Japan
- 2. I Hz realtime data collection from 200 GPS receivers selected from 1200+ GEONET stations operated by Geospatia Information Authority of Japan (former Geographical Survey Institute).
- Short baseline ionosphere gradient/scintillation system in Thailand

Short baseline ionospheric gradient/ scintillation measurement system in Japan

- Ionospheric gradient/scintillation measurements at Ishigaki Island (24.3°N, 124.2°E, 19.6° Mag. Lat) since 2008
- * 4 stations with 0.4-1 km separation (Maximum separation 1.4 km)
- All the sites are equipped with dual-frequency GPS receivers and GPS scintillation receivers.
- * 2 Hz sampling of lonospheric delay Workshop on Ionospheric data collection, analysis and sharing to support GNSS implementation, Bangkok, 5-6 May 2011

Short baseline ionosphere gradient/ scintillation system in Thailand

- Short baseline ionosphere gradient measurements near Bangkok airport.
 - Joint project of ENRI and King Mongkut's Institute of Technology Ladkrabang (KMITL)
 - Similar to the Ishigaki system
 - KMITL site is already in operation. Second receiver site will be started in mid 2011.
- More plasma bubble events are expected with increasing solar activity.

GEONET I Hz data collection

- Realtime data collection from 40° GPS Earth Observation Network (GEONET) at 1 Hz data rate.
- GEONET data were used to determine σ_{iono} value used in GBAS prototype [Yoshihara et al., ION GNSS 2010] and the ionospheric threat model used for ENRI's CAT-I GBAS prototype.

to support GNSS implementation, Bangkok, 5-6 May 2011

Summary

- Local ionospheric gradient is one of the most important parameter in GBAS.
- * Characterization of the ionosphere is necessary to design a system in such a way that the system is safe and available.
- Data of gradient associated with low latitude ionospheric anomalies are missing.
- Short baseline (10-20 km, comparable to the scale size of plasma bubble wall) measurements are required to establish an ionospheric threat model for GBAS.
- Wide-area (background) observations are necessary not only to characterize nominal ionosphere but also to understand the cause of the gradients.
- ENRI has started observations in Japan and Southeast Asia collaborating with institutes and universities.