REPORT OF THE TWENTY-FOURTH MEETING OF THE ICAO
REDUCED VERTICAL SEPARATION MINIMUM IMPLEMENTATION
TASK FORCE (RVSM/TF/24)

BANGKOK, THAILAND

8 – 12 NOVEMBER 2004

The views expressed in this Report should be taken as those of the
Task Force and not the Organization

Published by the ICAO Asia and Pacific Office, Bangkok
History of the Meeting

Introduction.. i
Attendance ... i
Officers and Secretariat... i
Opening of the Meeting .. i
Documentation and Working Language ... ii

Summary Report of the RVSM TF/24 Meeting

Agenda Item 1: Adoption of Proposed Agenda .. 1
Agenda Item 2: Operational Considerations .. 1
Agenda Item 3: Airworthiness and Aircraft Operations ... 5
Agenda Item 4: Safety and Airspace Monitoring ... 5
Agenda Item 5: Implementation Management Considerations 11
Agenda Item 6: Any Other Business ... 12
Agenda Item 7: Future Work .. 15

Appendices

Appendix A: List of Participants .. A-1
Appendix B: List of Papers ... B-1
Appendix C: Agenda ... C-1
Appendix D: State Letter AN 13/2.1-04/72 (RVSM Phraseologies) D-1
Appendix E Draft LOA between Kunming and Yangon .. E-1
Appendix F Task List ... F-1
Appendix G DOTS+ Presentation ... G-1
Appendix H Track Advisory Paper Exercise Report ... H-1
Appendix I Presentation on ATFM in Australia .. I-1
1.1 Introduction

1.1.1 The Twenty-fourth Meeting of the Reduced Vertical Separation Minimum Implementation Task Force (RVSM/TF/24) was held at the Kotaite Wing of the ICAO Asia and Pacific Office, Bangkok, Thailand from 8 to 12 November 2004.

1.2 Attendance

1.2.1 The meeting was attended by 39 participants from Australia, Bangladesh, China, India, Malaysia, Myanmar, Nepal, Pakistan, Singapore, Sri Lanka, Thailand, United States, IATA and IFALPA. A complete list of participants is at Appendix A.

1.3 Officers and Secretariat

1.3.1 Mr. Sydney Maniam, Head (Air Traffic Services) Civil Aviation Authority of Singapore, continued as Chairman of the Task Force. Mr. David J. Moores, Regional Officer ATM served as the Secretary for the meeting. He was assisted by Mr. Andrew H. Tiede and Mr. Kyotaro Harano, Regional Officers ATM.

1.4 Opening of the Meeting

1.4.1 Mr. Sydney Maniam welcomed the participants and opened the RVSM/TF/24 meeting. He highlighted that the meeting was part of the ICAO implementation process, whereby a one-year review of RVSM implementation had to be conducted for the flight information regions (FIRs) in the area south of the Himalayas and over the Bay of Bengal and beyond (Bay of Bengal and Beyond) area. To this end, the meeting would have to identify any difficulties that had been encountered by ATS providers, as well as operators, with respect to RVSM operations in the respective areas. In addition, the meeting would have to review the safety assessments that had been completed by the Monitoring Agency for the Asia Region (MAAR) for the introduction of RVSM. The meeting would also be required to adopt a safety oversight programme which would facilitate the continued use of RVSM in the areas concerned.

1.4.2 Mr. Maniam pointed out that the implementation of RVSM had resulted in 6 additional flight levels being available to operators. However, due to the long haul nature of flights from Asia to Europe, only 2 or at most 3 levels were operationally viable. Hence, there was a need to optimize the use of RVSM levels. In this context, Malaysia, Singapore and Thailand had commenced an operational trial to utilize RVSM levels based on specific demands at departure airports. He urged the States concerned to review current arrangements on the assignment of RVSM levels and fine tune existing procedures as necessary.

1.4.3 Mr. Maniam stressed that there was an urgent need for provisions to be put in place to improve the overall management of traffic in the Bay of Bengal and Beyond area so that the full benefits of RVSM could be realized. To facilitate the process, the ICAO Regional Office had arranged for Airservices Australia and the Federal Aviation Administration (FAA) of the United States to conduct presentations on systems, which could be used to enhance air traffic flow management in the area. He requested participants to make time for the presentations to gain insights into the use and benefits of the systems.

1.4.4 Mr. Maniam reminded all participants that it was necessary to continue to cooperate and work closely in order for States and operators to continue to use RVSM in a safe and efficient manner.
1.4.5 Mr. David J. Moores on behalf of Mr. Lalit Shah, Regional Director of the ICAO Asia and Pacific Regional Office, welcomed the participants. He congratulated all parties involved for the outstanding results of the RVSM implementation project for the Bay of Bengal and Beyond area. The meeting marked an important stage in the planning and implementation process and after this meeting, RVSM follow-up activities would be taken up by the Bay of Bengal ATS Coordination Group (BBACG) and the Regional Airspace Safety Monitoring Advisory Group (RASMAG). He reminded States that an essential aspect of the RVSM programme was the establishment and ongoing operation of the Regional Monitoring Agency (RMA) operated by MAAR, a key element in the safety management programme. Now that the RVSM/TF work for the Bay of Bengal and Beyond was at an end, it was crucial that full support for MAAR was maintained. RVSM had led to substantial benefits in airspace capacity, efficiency, economy, and for the environment. It was gratifying that RVSM was now firmly established in nearly all the international airspace in the region.

1.5 Documentation and Working Language

1.5.1 The working language of the meeting as well as all documentation was in English.

1.5.2 Nine (9) Working Papers and three (3) Information Papers were presented to the meeting. A list of papers is included at Appendix B.
Agenda Item 1: Adoption of Proposed Agenda

1.1 The meeting adopted the agenda for the meeting. The agenda is at Appendix C to the Report.

Agenda Item 2: Operational Considerations

RVSM Implementation

2.1 The meeting undertook a review of RVSM implementation in the FIRs in Bay of Bengal and Beyond area on 27 November 2003. The States and international organizations provided an update on RVSM operations as outlined in the following paragraphs.

Bangladesh

2.2 Bangladesh reported that RVSM had been implemented successfully as planned. Initially, some difficulties were encountered with regard to the assignment of levels for eastbound flights which was to facilitate transition to China metric levels in Kunming FIR. These issues were subsequently resolved and RVSM operations were progressing well.

India

2.3 India informed that RVSM had been implemented successfully on 27 November 2003. Some operational issues were experienced with respect to levels that had been reserved for aircraft on international traffic flows. As a result, level assignment for domestic traffic was slightly restricted initially, which subsequently with increased confidence of the ATC managers was resolved by application of flexible level allocation for crossing traffic on international traffic flows. India also encountered difficulties in ensuring the 10-minute longitudinal separation between pairs of aircraft operating at FL 300 – FL 320, FL 340 – FL 360 and FL 380 – FL 400. Hence, there were occasions when re-routing of aircraft was unavoidable. This, to a large extent, was due to airspace constraints in the Kabul FIR where RVSM was not implemented.

2.4 India reported that from 26 March 2004, FL 280 was made available between 1930 UTC to 2230 UTC for traffic from Delhi FIR via TIGER and SAMAR. In addition, major changes to the ATS route structure had been completed over the last one year. These arrangements had resulted in reduction of ground delays at Delhi Airport and significant improvements to traffic flows. Details of the changes made are provided in paragraphs 2.22-2.24.

Malaysia

2.5 Malaysia reported that RVSM had been implemented successfully. In addition, the operational trial for a more flexible use of flight levels across the Bay of Bengal agreed with Singapore and Thailand was progressing well. However, arrangements for the release of FL 300 by Bangkok Area Control Center (ACC) had to be fine-tuned to further optimize the assignment of RVSM levels to westbound international flights from Kuala Lumpur and Singapore.

Myanmar

2.6 Myanmar informed that RVSM had been implemented successfully on 27 November 2003. The draft transition procedures with Kunming ACC had been finalized and would be incorporated in the Letter of Agreement (LOA) between the two ACCs. Myanmar also reported that in consultation with ICAO and Thailand, improvements to communication and surveillance
capabilities would be implemented in early 2005. This would include relocation of the ACC to a new operations building, installation of VSAT, improvement to VHF and HF radio equipment and expansion of the RCAG station network, as well as reactivation of the CPDLC and ADS trial.

Nepal

2.7 Nepal reported that RVSM was implemented successfully as planned on 27 November 2003. RVSM operations were progressing well and no major problems had been encountered.

Pakistan

2.8 Pakistan reported that RVSM was implemented on 27 November 2003. Overall, RVSM operations were progressing well and the management of traffic had improved significantly. Pakistan advised the meeting of a major failure of a satellite communication link on 12 September 2004 leading to the loss of VHF communications. As a result, RVSM operations were suspended from 1648 UTC until 0001 UTC on 13 September 2004 in the Karachi FIR. During the suspension period, coordination with adjacent ACCs was effected for the transition and the application of a conventional vertical separation minimum of 2 000 ft between aircraft.

Singapore

2.9 Singapore informed that initially the implementation of RVSM did not result in significant improvement to ground delays for westbound international departures to Europe. However, with the implementation of the operational trial with Malaysia and Thailand and the use of alternate ATS routes, e.g., P628, by airlines, the average ground delays had reduced from 18% to 13%. Singapore agreed with Malaysia that arrangements for the release of FL 300 by Bangkok ACC had to be fine-tuned to further optimize the assignment of RVSM levels to westbound international flights to Europe.

Sri Lanka

2.10 Sri Lanka reported that RVSM was implemented successfully on 27 November 2003. RVSM operations were progressing well and the overall management of traffic had improved significantly.

Thailand

2.11 Thailand reported that RVSM was introduced successfully on 27 November 2003. Overall, traffic capacity had increased and operations were progressing in a stable mode. Thailand informed that the operational trial with Malaysia and Singapore was on-going. In addition, CPDLC and ADS trials had commenced on 5 November 2004 to enhance communication and surveillance capabilities in Bangkok FIR. Thailand proposed that existing coordination procedures with Malaysia, Myanmar and Singapore be improved to facilitate the use of all RVSM levels during peak traffic periods and further enhance the management of traffic.

IATA

2.12 IATA commended the States concerned for their efforts in implementing RVSM in the Bay of Bengal and Beyond area. Overall, there had been significant improvements in operations as a result of the availability of additional levels. IATA highlighted the need for an air traffic flow management (ATFM) plan to further ease congestion and ground delays experienced by westbound international departures to Europe. The ATFM plan is discussed further under Agenda Item 6.
IFALPA

2.13 IFALPA complimented the States involved in RVSM implementation in the Bay of Bengal and Beyond area and thanked them for their efforts. Overall, RVSM operations were progressing well. IFALPA pointed out that there had been some communication difficulties experienced in the Yangon FIR and in the Port Blair area on frequencies 124.55 MHz, 5658 KHz and 3467 KHz.

Assignment of RVSM Levels

2.14 The meeting reviewed the current operational trial that was implemented by Malaysia, Singapore, and Thailand on the assignment of RVSM levels for westbound international flights. Based on the existing No-Pre-Departure Coordination (No-PDC) procedures, FL 280, FL 320 and FL 340 were assigned to aircraft planned on the parallel routes over the Bay of Bengal, and FL 300 to aircraft on crossing routes. Malaysia, Singapore and Thailand had been coordinating daily to assign levels based on actual traffic demand. The meeting noted that there had been no significant improvement to the traffic situation as ground delays were still encountered by airlines at departure airports in the above States during the night peak period for the westbound traffic flow to Europe and the Middle East. Malaysia, Singapore, and Thailand reviewed existing coordination procedures to facilitate flexible use of all levels based on traffic demand.

2.15 IATA stressed that the full utilization of all available flight levels and slots was crucial to reducing ground delays and to enable operators to obtain optimum levels as soon as practicable. The impact of the present unprecedented aviation fuel costs on airline operations was of the highest priority for operators. Therefore, improvements to the efficiency of air traffic operations were urgently required. The meeting recognized the concerns of the operators and efforts were being made to address this problem. The latest coordination procedures agreed by the ATS providers concerned were expected to lead to improvements.

2.16 The meeting requested IATA to monitor the situation and provide the States concerned with an update over the next 2 months. The meeting also agreed to refer this matter to the next BBACG meeting for further action.

Phraseologies for RVSM Operations

2.17 The meeting noted that the ICAO Air Navigation Commission (ANC) reviewed proposed Amendment 3 to the Procedures of Air Navigation Services – Air Traffic Management (PANS-ATM, Doc 4444). The proposed amendment related to, inter alia, phraseologies concerning RVSM. The meeting recognized that the ANC had approved the amendment for applicability on 25 November 2004. Consequently, the amendment was approved on 29 June 2004 by the President of the Council on behalf of the Council in accordance with established procedures.

2.18 The meeting was advised that the phraseologies related to RVSM operations and they had been developed by various RVSM meetings in different regions. In the Asia/Pacific Region, this Task Force adopted the phraseologies at its 12th meeting (September 2001, Denpasar), which followed those developed by EUROCONTROL, and included the phraseologies in a draft AIP supplement to be published by States. The manner in which the phraseologies were provided varied from region to region e.g., in Europe, the phraseologies were provided in the Regional Supplementary Procedures (SUPPs), and in the Asia/Pacific Region, this Task Force adopted them and States were encouraged to publish them in their AIPs.

2.19 In light of the above, ICAO Headquarters, Montreal undertook a review of the phraseologies and developed the amendment proposal to the PANS-ATM for global applicability.
2.20 As a consequence of the above, State Letter AN 13/2.1-04/72 was issued on 30 July 2004 containing Amendment 3 to the PANS-ATM with an effective date of 25 November 2004 (Appendix D to the Report refers).

2.21 States were urged to adopt these phraseologies and to update their ATC operating manuals and AIPs, where required, as a matter of priority.

New Route Development in Indian FIRs

2.22 The meeting noted that during the last one-year some very significant changes had been carried out on the ATS route structure in India FIRs, viz:

a) ATS Route M 890 had been established as a by-pass route of the Delhi TMA, providing an alternate route 17 NM shorter than R460W-A466W between Lucknow ‘LLK’ VOR and SAMAR;

b) ATS route UM551 had been implemented to provide a shorter route between Trivandrum and Salalah across the Arabian Sea, resulting in a saving of about 103 NM between waypoint DONSA and Salalah Airport in the Sultanate of Oman;

c) ATS route W107 had been established to provide a direct route, 61 NM shorter, for flights operating between Chennai and Hong Kong via Port Blair ‘PPB’ VOR;

d) ATS Route P628 had been extended beyond ASOPO to Rahim Yar Khan ‘RK’ VOR in consultation with Defense Authorities;

e) the lower limit of L333 was changed from FL 310 to FL 300 on 27 November 2003; and

f) further efforts were continuing to shorten or straighten some more international ATS routes passing through Indian airspace. For example Kathmandu – Kunming route via the northeastern part of Indian airspace, had since been approved by India. The Civil Aviation Authority of Nepal was coordinating with other ATS providers for the remaining portion of the route.

2.23 As brought out by India, the meeting noted that available capacity on certain international ATS routes was still underutilized and a few international flights operate on those routes, as originally envisaged by the EMARRSH Task Force. It was suggested by India that airlines should fly these routes on experimental basis and the States concerned to evaluate whether delays on the ground were reduced by the spread of westbound traffic on all routes. The increased fuel consumption for westbound aircraft flying via slightly longer routes may perhaps be offset by the fuel saving by flying shorter routes now provided for eastbound flights. Additionally, a considerably higher tailwind component for the eastbound flights on the shorter routes would give extra time and fuel savings to the participating airlines.

2.24 In general, the airspace below the boundaries of RVSM, RNAV and RNP airspace was not normally occupied by medium and long-range international flights. Considering the specific requirements of traffic operating between Hong Kong – Johannesburg, Kuala Lumpur – Colombo, Bangkok – Middle East, the lower limit of certain ATS routes had been kept at FL 260. Two conventional ATS routes, namely G472 and B466, also had been kept operational by India to cater for
flights unable to operate in the higher level bands but still needed to plan their flights to cross the Bay of Bengal.

Agenda Item 3: Airworthiness and Aircraft Operations Issues

Global RVSM Aircraft Approval Registry

3.1 The meeting noted the responsibility of MAAR to establish and maintain a central registry of State RVSM operational approvals of operators and aircraft as required by RVSM implementation documentation. The RASMAG/2 meeting (October 2004) noted this problem and States had been requested to provide RVSM approval records of all registered aircraft.

3.2 The meeting recalled that the registry forms part of the Global RVSM Aircraft Approval Registry Database and would assist States to verify the RVSM approval status of aircraft operating in their areas. MAAR requested States concerned to provide monthly updates on RVSM approvals issued, no later than the 15th day of the following month. Complete details of RVSM approval registry records were available on the MAAR website (www.aerothai.co.th/maar). The ICAO Regional Office agreed to send a reminder to all States requesting them to follow up as necessary.

Continuous Monitoring Program

3.3 India expressed the need for follow-up on the height keeping-performance of RVSM approved aircraft to ensure safety of aircraft operations in the RVSM environment, and sought clarification on the modalities to be adopted. MAAR explained that the procedures for the Continuous Monitoring Program were being finalized by the Separation and Airspace Safety Panel (SASP). MAAR would adopt the finalized procedures and notify States concerned in due course. It was further noted that ICAO had not established a global long term monitoring policy and this was being examined by SASP.

3.4 In regard to the minimum monitoring requirement (MMR) for the Asia/Pacific Region, the ICAO RMA Handbook, shortly to be published, would provide guidance. The Pacific Approval Registry and Monitoring Organization (PARMO) had adopted an MMR similar to that in the RMA Handbook, and the RASMAG/1 meeting agreed that the PARMO MMR should be the MMR for the region. The meeting agreed that the ASIA/PAC RMAs should coordinate and agree on the MMR to be adopted in line with the handbook. The meeting was advised by the Secretariat that the APANPIRG/15 meeting (August 2004) had appointed Airservices Australia as the RMA for Australian airspace not covered by PARMO. It was pointed out that some variation in the MMR could arise regionally in respect to the aircraft types placed in the various groups. But it was not expected that there would be significant variations to the number of aircraft required to be monitored.

Agenda Item 4: Safety and Airspace Monitoring

Review Safety Assessment of RVSM Operations in the Bay of Bengal and Beyond Area

4.1 MAAR presented the annual report of airspace safety review of RVSM implementation and operations in the Bay of Bengal and Beyond area which involved 15 FIRs. The review was conducted based on a one-month traffic sample data collected during July 2004.

4.2 The meeting reviewed the completion of the traffic data collected between 1 and 31 July 2004 as summarized in Table 3-2 in the MAAR report as shown below. The meeting noted that
not all States had provided suitable traffic sample data for analysis and the overall results of the analysis would therefore have to be updated when this data became available.

<table>
<thead>
<tr>
<th>States</th>
<th>FIR Name</th>
<th>Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>Dhaka</td>
<td>No data received</td>
<td>-</td>
</tr>
<tr>
<td>India</td>
<td>Chennai</td>
<td>Received</td>
<td>Data completed</td>
</tr>
<tr>
<td></td>
<td>Delhi</td>
<td>Received</td>
<td>Data completed</td>
</tr>
<tr>
<td></td>
<td>Kolkata</td>
<td>Received</td>
<td>Data completed</td>
</tr>
<tr>
<td></td>
<td>Mumbai</td>
<td>Received</td>
<td>Data completed</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Jakarta</td>
<td>No data received</td>
<td>-</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Kuala Lumpur</td>
<td>Received</td>
<td>Data completed</td>
</tr>
<tr>
<td>Maldives</td>
<td>Male</td>
<td>Received</td>
<td>Data completed</td>
</tr>
<tr>
<td>Myanmar</td>
<td>Yangon</td>
<td>No data received</td>
<td>-</td>
</tr>
<tr>
<td>Nepal</td>
<td>Katmandu</td>
<td>No data received</td>
<td>-</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Karachi</td>
<td>Received</td>
<td>Data completed</td>
</tr>
<tr>
<td></td>
<td>Lahore</td>
<td>Received</td>
<td>Missing data on 5 July 2004</td>
</tr>
<tr>
<td>Singapore</td>
<td>Singapore</td>
<td>Received</td>
<td>Data completed</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>Colombo</td>
<td>No data received</td>
<td>-</td>
</tr>
<tr>
<td>Thailand</td>
<td>Bangkok</td>
<td>Received</td>
<td>Data completed</td>
</tr>
</tbody>
</table>

Table 3-2: Summary of Traffic Data of July 2004 Received by MAAR for the Bay of Bengal and Beyond Area

4.3 Based on the available traffic data, the number of flights in the traffic data was broken down into various categories and summarized as follows:

- daily flights operating in the FIR;
- top-50 State pairs, based on FIR-flights (charts showed for each State pair, traffic in both direction);
- top-50 city pairs, based on FIR-flights (chart showed for each city, traffic in both directions);
- top-50 commercial operators, in terms of total FIR-flights between FL 290 to FL 410 inclusive (these operators represent over 90% of the operations observed in the sample);
aircraft types observed in the various FIR samples were combined into aircraft groups (the number of FIR-flights of the top-50 aircraft group were depicted); and

- flight level utilization in the RVSM airspace between FL 290 to FL 410 inclusive was depicted.

4.4 The meeting took note of the report on the summary of the Large Height Deviation (LHD) occurrences in Bay of Bengal and Beyond area between January 2003 and September 2004. The summary of LHD reports submitted by the concerned States in the Bay of Bengal and Beyond area are provided in Table 6-1 of the MAAR report as shown below:

<table>
<thead>
<tr>
<th>States</th>
<th>FIR Name</th>
<th>Received From</th>
<th>Remarks/Missing Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>Dhaka</td>
<td>Jan 03</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Chennai</td>
<td>Jan 03</td>
<td>Missing reports: Aug 04 to present</td>
</tr>
<tr>
<td>India</td>
<td>Delhi</td>
<td>Jul 04</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Kolkata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Mumbai</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>Jakarta</td>
<td>Jan 03</td>
<td>Missing reports: Feb 04 to present</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Kuala Lumpur</td>
<td>Jan 03</td>
<td>Sep 04</td>
</tr>
<tr>
<td>Maldives</td>
<td>Male</td>
<td>Jan 03</td>
<td></td>
</tr>
<tr>
<td>Myanmar</td>
<td>Yangon</td>
<td>Jan 03</td>
<td>Missing reports: Jun 04 to present</td>
</tr>
<tr>
<td>Myanmar</td>
<td></td>
<td>May 04</td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>Katmandu</td>
<td>Jan 03</td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td></td>
<td>Jul 04</td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>Karachi</td>
<td>Jan 03</td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>Lahore</td>
<td>Jan 03</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>Singapore</td>
<td>Jan 03</td>
<td>Sep 04</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>Colombo</td>
<td>Jan 03</td>
<td>Missing reports: Jul 04 to present</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td></td>
<td>Jun 04</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>Bangkok</td>
<td>Jan 03</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td></td>
<td>Oct 04</td>
<td></td>
</tr>
</tbody>
</table>

Table 6-1: Summary of LHD Reports Received by MAAR since January 2003 for Bay of Bengal and Beyond Area

4.5 Based on the received LHD reports, the meeting reviewed the number of LHD occurrences and the associated LHD duration in minutes in the Bay of Bengal and Beyond area for each month between January 2003 and September 2004, as shown in Figure 6-1 of the MAAR report shown below. In summary, there were 11 LHD occurrences in the Bay of Bengal and Beyond area, which accounted for 35 minutes of operational errors since January 2003.
The meeting also reviewed the cause of LHD occurrences reported to MAAR as recorded in Figure 6-2 of the MAAR report as shown below. The meeting noted that causes of LHD occurrences were determined by the primary cause of deviation and also noted that all of the LHD occurrences were attributable to operational errors. Figure 6-2 summarizes the number of LHD occurrences by the causes of deviation, using the letter-coding scheme of Table 6-2 in the MAAR report and reproduced below:
Summary Report of the Meeting

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause of Large Height Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Failure to climb/descend as cleared</td>
</tr>
<tr>
<td>B</td>
<td>Climb/descend without ATC Clearance</td>
</tr>
<tr>
<td>C</td>
<td>Entry into airspace at an incorrect flight level</td>
</tr>
<tr>
<td>D</td>
<td>Deviation due to turbulence or other weather related cause</td>
</tr>
<tr>
<td>E</td>
<td>Deviation due to equipment failure</td>
</tr>
<tr>
<td>F</td>
<td>Deviation due to collision avoidance system (TCAS) advisory</td>
</tr>
<tr>
<td>G</td>
<td>Deviation due to contingency event</td>
</tr>
<tr>
<td>H</td>
<td>Aircraft not approved for operation in RVSM restricted airspace</td>
</tr>
<tr>
<td>I</td>
<td>ATC system loop error; (e.g. pilot misunderstands clearance message or ATC issues incorrect clearance)</td>
</tr>
<tr>
<td>J</td>
<td>Equipment control error encompassing incorrect operation of fully functional FMS or navigation system (e.g. by mistake the pilot incorrectly operates INS equipment)</td>
</tr>
<tr>
<td>K</td>
<td>Incorrect transcription of ATC clearance or re-clearance into the FMS</td>
</tr>
<tr>
<td>L</td>
<td>Wrong information faithfully transcribed into the FMS (e.g. flight plan followed rather than ATC clearance or original clearance followed instead of re-clearances)</td>
</tr>
<tr>
<td>M</td>
<td>Error in ATC-unit to ATC-unit transferred/transition message</td>
</tr>
<tr>
<td>N</td>
<td>Negative transfer received from transferring/transition ATC-unit</td>
</tr>
<tr>
<td>O</td>
<td>Other</td>
</tr>
</tbody>
</table>

Table 6-2: Codes Defining Causes of LHD Reports

4.7 In light of the information provided, the meeting noted that the number of LHD occurrences and erroneous duration were considered to be relatively small.

4.8 Based on the collision risk estimates in the Traffic Sample Data (TSD) and LHD reports submitted to MAAR, the technical and operational risks for the RVSM implementation in the Bay of Bengal and Beyond area is 5.59×10^{-10} and 1.37×10^{-9} fatal accidents per flight hour, respectively, as shown in Table 7-5 in the MAAR report shown below. Thus, the total risk attributed to all causes is 1.93×10^{-9}. Figure 7-1 of the MAAR report shown below presents the trends of collision risk estimates for each month using the appropriate 12-month interval of LHD reports received by MAAR. The estimates of both technical and total risks from the available TSD and LHD reports satisfy the agreed Target Level of Safety (TLS) value of no more than 2.5×10^{-9} and 5.0×10^{-9} fatal accidents per flight hour due to the loss of a correctly established vertical separation standard of 1,000 ft and to all causes, respectively.

<table>
<thead>
<tr>
<th>Source of Risk</th>
<th>Lower Bound Risk Estimation</th>
<th>TLS</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Risk</td>
<td>5.59×10^{-10}</td>
<td>2.5×10^{-9}</td>
<td>Below Technical TLS</td>
</tr>
<tr>
<td>Operational Risk</td>
<td>1.37×10^{-9}</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Risk</td>
<td>1.93×10^{-9}</td>
<td>5.0×10^{-9}</td>
<td>Below Overall TLS</td>
</tr>
</tbody>
</table>

Table 7-5: Risk Estimates for the RVSM Implementation in Bay of Bengal and Beyond Area
The meeting was pleased to note that the results of the risk calculations were well within the TLS. However, there were a number of disturbing issues that had been identified by MAAR that required urgent follow up:

- missing TSD;
- missing LHD reports;
- incomplete and non-reporting of State approvals registry data; and
- incomplete information on follow-up monitoring of aircraft height-keeping performance in accordance with the MMR.

The meeting was concerned that some States had failed to fulfill their obligations towards ICAO safety requirements for ongoing operation of RVSM. The periodic review and updating of the safety assessments for RVSM airspaces was an essential part of RVSM operations, along with the maintenance of the regional and global records of States’ aircraft and operator RVSM approvals. The provision of monthly LHD reports, including “NIL reports” where applicable, was essential for determining operational errors that impact on RVSM safety. The absence or incompleteness of such data denigrates the integrity of the safety assessment results.

In light of the above, the meeting agreed that, in view of the incomplete safety assessment for those FIRs concerned, it was urgent that the States involved be informed that the safety data must be submitted to MAAR as soon as possible. Without the safety assessment verifying that the TLS was being met, the safety of RVSM operations could not be assured. In this regard, the meeting noted that the RASMAG/2 meeting had requested the Regional Office to inform the States involved to submit the data to MAAR as a matter of urgency. The Secretariat confirmed that action
was being taken. In addition, a mission was under preparation to one of the States concerned and these issues would be raised.

Report of the RASMAG/2 meeting

4.12 The meeting reviewed the summary of the Report of the RASMAG/2 meeting in respect to RVSM matters, which was held from 4 to 8 October 2004 at Bangkok. The meeting noted that RASMAG was required to review the reports of the Asia/Pacific safety monitoring agencies and submit a consolidated report to APANPIRG. At the RASMAG/2 meeting, the reports of the RMAs operated by Airservices Australia, MAAR and PARMO were reviewed.

4.13 The meeting recalled that one of the duties of the RMAs was to regularly circulate to all parties concerned reports reviewing RVSM-related performance in affected FIRs relative to the established safety goals. The RASMAG/2 meeting had agreed that the RMAs would conduct an annual update of the RVSM safety assessments based on TSD for the month of December. The meeting noted that the RASMAG/2 meeting had not indicated a date when this assessment should be completed and this needed to be clarified.

4.14 The meeting noted that the RASMAG/1 meeting had recommended to the APANPIRG/15 meeting that Airservices Australia should be appointed as an RMA and Safety Monitoring Agency (SMA), and this had been agreed.

4.15 The RASMAG/2 meeting had also addressed the problem brought to the attention of the meeting by MAAR concerning States not submitting data required for the safety assessment in a timely manner. This had also been experienced by PARMO and the Pacific States concerned would also be included in the letter to be issued by the Regional Office.

Agenda Item 5: Implementation Management Considerations

Transition Arrangement between Kunming and Yangon FIRs

5.1 The meeting noted that the transition procedure arrangement between Kunming and Yangon ACCs was being revised. China and Myanmar had been coordinating improvements to the transition procedures between the China Metric levels operating in the Kunming FIR and the ICAO RVSM levels operating in the Yangon FIR.

5.2 The meeting recalled that revised transition procedures had been discussed between China and Myanmar in line with a proposal presented by the RVSM Task Force since the implementation of RVSM in Bay of Bengal and Beyond area in November 2003. Following agreement between China and Myanmar representatives at this meeting, an LOA would be signed with effect on 1601 UTC, 20 January 2005. The draft LOA is attached as Appendix E to the Report.

5.3 IATA expressed appreciation to the States concerned for modifying the transition procedures, which would remove the double transition, and simplify the procedure and improve efficiency. In addition, IATA reminded the meeting that Myanmar should issue a NOTAM and revise the no communication procedures relating to the transition procedures.

5.4 Myanmar noted the request and agreed to review and publish revised no communication procedures as appropriate.

5.5 IATA drew attention to the complicated radio communication procedures in the Dhaka, Kolkata and Yangon FIRs requiring pilots to report to the three ACCs simultaneously as well as reporting under the IATA Flight Broadcast Procedure in effect in the Yangon FIR. IATA
requested that this matter should be reviewed by the States concerned to alleviate unnecessary workload on flight crews. The Secretary advised the meeting that the Regional Office was presently undertaking missions to the States concerned and this matter would be addressed.

ATFM Plan

5.6 The meeting recalled that at previous Task Force meetings and other ATS coordination meetings, it had been recognized that the EMARSSH routes implemented on 28 November 2002 did not provide the anticipated benefits because the full phase II programme as originally agreed to by States could not be implemented. In this regard, the meeting recalled that the problem was primarily due to only two independent traffic flows, i.e., via TIGER or SAMAR, being available instead of the anticipated four independent Asia – Europe flows across the northern half of the Bay of Bengal and through India, Pakistan, and Afghanistan.

5.7 The meeting also noted that the implementation of RVSM in November 2003 had improved the availability of levels over the Bay of Bengal and Indian sub-continent, particularly the higher levels above FL 320. However, the long haul flights to Europe from Southeast Asia airports, (mainly Bangkok, Kuala Lumpur and Singapore), which were weight and performance restricted, could not operate at these higher levels. It was noted that the long haul flights operated at the lower levels, i.e., FL 280, FL 300, and FL 320, during the first 3-4 hours of the flight. As FL 300 was usually occupied by westbound flights on routes crossing P628, L750 and M770 under the No-PDC arrangement, only two levels were routinely available.

5.8 Also, the meeting noted that due to constraints in the Lahore FIR, which was a transition area for the non-RVSM Afghanistan airspace, this caused a “bottleneck”, which had a major impact on availability of levels. IATA drew attention to the present air traffic arrangements, which in their view did not make maximum use of available capacity. In particular, as N644 and A466 diverged from Dera Ismail Khan (DI) VOR, it should be possible to accommodate more traffic than at present, whereby only three aircraft at a time were permitted subject to no more than two aircraft being on the same route. Furthermore, as both routes were within radar coverage, better use should be made of providing lateral separation between the aircraft that diverge after DI. However, these two routes were still being treated as one single route, effectively halving the available capacity. The meeting recognized this problem and requested that Pakistan and other parties concerned to review the arrangements.

5.9 The meeting was advised by Pakistan that as a result of implementation of the route segment RK VOR – KANDAHAR on G792 on 1 November 2004 (available from 1901 UTC to 2359 UTC), a third parallel route via P628 was now available and this should provide additional capacity and relieve congestion on the other routes. IATA congratulated the ICAO Regional Offices, India, Pakistan and the Afghan authorities for their efforts in opening this important segment. It was anticipated that operators would now start to flight plan on this routing. The meeting requested the Regional Office to obtain confirmation from the Coalition Force Air Component Command (CFACC, military authority responsible for Afghanistan airspace) that a NOTAM has been issued for the implementation of G792 within the Kabul FIR.

Agenda Item 6: Any Other Business

Review of Action Items

6.1 The meeting reviewed the completion of tasks relating to the implementation of RVSM in the Bay of Bengal and Beyond area, based on the list that had been developed by the ICAO RVSM Implementation Task Force. All the tasks were successfully completed and closed as shown in Appendix F to the Report.
Air Traffic Flow Management in the Bay of Bengal and Beyond Area

6.2 The meeting considered the ongoing problems surrounding the implementation of effective ATFM in the Bay of Bengal and Beyond area, noting that as well as the RVSM Task Force and BBACG meetings that had considered the issue, several special coordination meetings had taken place over the past two years in an effort to develop an ATFM system or traffic orientation scheme to overcome these serious problems.

6.3 The meeting was informed that the APANPIRG/15 meeting had noted the considerable efforts being made by States to collaborate together and with IATA and the airlines to improve the ATFM over the Bay of Bengal and Beyond area. It was recognized that considerable constraints on the airspace were beyond the control of the States concerned. However the APANPIRG/15 meeting encouraged all parties to continue their efforts and to take into account the benefits to be derived from ATM automated systems.

6.4 In regard to the complex traffic flows into the Kabul FIR resulting from the lack of an ATFM plan, IATA demonstrated to the meeting that although the restrictions in the Kabul FIR acted as a severe choke on traffic flow, there was sufficient airspace capacity available and the application of suitable flow management measures prior to the traffic reaching the Kabul FIR would allow the maximum possible flow rate to be achieved through Afghanistan. IATA summarized the traffic forecasts for Asia, noting the substantial general increases expected in the near term and the explosive growth anticipated for the Indian sub-continent in particular.

6.5 During the BBACG/15 meeting (September 2004) IATA had presented a brief summary of two automated flow management systems, the Dynamic Ocean Track System Plus (DOTS+) used by the FAA and the SKYFLOW system used by Airservices Australia. The BBACG/15 meeting had agreed that further work should be undertaken with a view to formulating a regional ATFM plan as soon as practicable, and agreed that the material presented by IATA utilizing automated flow management applications warranted further study. Accordingly, the Regional Office had invited representatives from the FAA and Airservices Australia to provide technical presentations to the RVSM/TF/24 meeting regarding the two systems referred to above.

US FAA Dynamic Ocean Track System Plus (DOTS+)

6.6 An FAA representative briefed the meeting regarding the DOTS+ automated flow management system. DOTS+ and its Online Track Advisory service has been in operational use in the United States for more than 10 years and could be readily modified to manage the westbound departures across the Bay of Bengal. DOTS+ would do this by designating metered gateway fixes for each traffic flow on the westbound tracks of Bay of Bengal and Beyond area. Aircraft operators would submit gateway requests, which included track selection, requested altitude and an ETA at the gateway fix for each flight (with a provision to submit up to 8 choices) via the Internet or AFTN for each departure to Europe. DOTS+ would then create a gateway reservation list that would take into account any constraints like flow and altitude restrictions for each track. The system would be flexible, able to accept changes at many stages through the process, and could be set at whatever flow rate (e.g. 10 minutes, 12 minutes) was desired at the gateway fixes. This system developed by the FAA could be owned and operated by a State ATS provider(s) or by IATA and its member airlines, and the software provided by the FAA under a licensing arrangement.

6.7 In practice, the system would need to be self policing, requiring the cooperative participation of all users. In the United States, operators that did not use the system correctly were afforded a lower priority, being accommodated only after the remaining users had been processed. DOTS+ also has comprehensive reporting capabilities, allowing (for example) the identification of operators that book multiple slots they did not use. Consequently, there was significant incentive for
operators to use the system correctly. Copies of the DOTS+ presentation are included as Appendix G and Appendix H to the Report.

6.8 The meeting expressed its appreciation to ICAO, IATA and the FAA for the presentation on the DOTS+.

Airservices Australia’s SKYFLOW

6.9 Airservices Australia gave a presentation regarding general flow control techniques and their Central Traffic Management System (CTMS) that was being used to manage traffic into Sydney, using software called SKYFLOW developed in-house by Airservices Australia. The meeting was informed of how this system could be modified to manage departures that operate across the Bay of Bengal and Beyond area.

6.10 In simplified terms, the system would operate as follows:

• airline schedules would be loaded daily via the Internet;
• a series of defined gateway fixes would be established in Afghanistan airspace;
• capacity at gateways would be decided by ATC;
• a programme would be run and results made available by agreed time;
• information would be sent to stakeholders via chosen predetermined means (internet, fax, etc.);
• flight planning would be submitted based on the final programmed time;
• flights would depart on the programmed time; and
• tactical control would still be required for final management.

6.11 Airservices Australia advised that, pursuant to a business decision taken in recent weeks, they had elected to remove the CTMS/SKYFLOW system from further consideration as an alternative ATFM system tool for deployment in the Bay of Bengal and Beyond area. The Airservices Australia presentation is included as Appendix I to the Report.

6.12 The meeting expressed its appreciation to Airservices Australia for the informative presentation on the CTMS/SKYFLOW.

ATFM Plan

6.13 The meeting recognized the need for improvements to be made to the overall management of traffic in the Bay of Bengal and Beyond area. The meeting also noted that the DOTS+ or a similar system, could be used to streamline the flow of traffic, alleviate congestion, and consequently reduce ground delays at international airports. The meeting agreed that a Special Coordination Meeting (SCM) should be convened to study the matter in greater detail, taking into account current operational requirements and future increases in traffic flows. In addition, the meeting considered that an operational trial should be conducted to enable the States concerned to assess the effectiveness of the system and the corresponding ATFM plan. To this end, the meeting agreed that the SCM should report its findings and recommendations to the next ATM/AIS/SAR Sub-Group meeting (4-8 July 2005) for endorsement by APANPIRG/16. The ICAO Regional Office would liaise with the States concerned and arrange for the SCM in early 2005.
6.14 The meeting was of the view that consideration should be given to wider application of ATFM automated tools, as traffic growth would necessitate operating ATFM in other areas in the region. In this regard, the meeting noted that a gate-to-gate approach must be adopted and that en-route operations should not be taken into account in isolation from terminal and airport operations. Australia advised the meeting that at the next Informal South Pacific ATC Coordinating Group (ISPACG/19) meeting in February/March 2005, specialists on terminal and airport operations had been invited to participate, in recognition of the importance of adopting a gate-to-gate approach to flow management. The meeting agreed that a Task Force should be set up under the ATM/AIS/SAR/SG as this would facilitate broader consideration under the purview of APANPIRG.

6.15 The Secretariat suggested that States should indicate their willingness to make a long term commitment to supporting such an effort. Accordingly, the first step should be to seek this commitment from States, as the setting up of a Task Force would not be feasible without this assurance. Further, the meeting agreed that ATM/AIS/SAR/SG/16 should be requested to undertake this task and APANPIRG would also need to endorse this plan. The Secretariat agreed to present the outcome of the SCM to the ATM/AIS/SAR/SG/16 to take appropriate follow-up action.

Civil/Military Coordination

6.16 India reported that coordination efforts had been made with their military authority. At the RVSM/TF/23 meeting (October 2004), a State expressed concerns over unidentified aircraft flying in an RVSM airspace without authorization. At this meeting, concerns over the approval process and approval registry of military aircraft for RVSM operation were expressed.

6.17 In light of the above, the meeting noted the importance of close coordination between civil aviation and military authorities. The Secretary advised that a Civil/Military Coordination Seminar would be held from 14 to 17 December 2004 at the Regional Office, and this issue would be addressed at that seminar.

Agenda Item 7: Future Work

7.1 The meeting agreed to declare full RVSM operational capability for the Bay of Bengal and Beyond area since RVSM operations were progressing well. The meeting also agreed that the outstanding issues relating to RVSM operations in the Bay of Bengal and Beyond area should be completed bi-laterally by the States concerned, in consultation with the ICAO Regional Office and IATA. Also, BBCAG, RASMAG and ATM/AIS/SAR/SG would continue to address relevant RVSM issues and take appropriate follow-up action.

8. Closing of Meeting

8.1 In closing the meeting, Mr. Maniam thanked participants for their contribution and especially the FAA and Airservices Australia for the excellent presentations, which had greatly contributed to a better understanding of ATFM. As this was the last meeting of the RVSM Task Force on the Bay of Bengal and Beyond implementation project, he congratulated all parties involved for the outstanding accomplishment in implementing RVSM and continued successful operations.

8.2 The meeting had identified some areas of concern but these matters would be addressed by ICAO and should be rectified in due course. The question of air traffic flow management and the efficiency of air traffic operations had been thoroughly discussed, and the outcomes were encouraging. In addition, the establishment of an air traffic flow management system for the Bay of Bengal had moved a step forward.
8.3 The Secretariat thanked participants and the Chairperson for having achieved a very successful outcome to this meeting, which demonstrated the excellent spirit of cooperation that has marked all the RVSM/TF meetings. The way forward for future work on the Bay of Bengal air traffic arrangements was a positive outcome.

8.4 The meeting expressed appreciation to MAAR for the excellent and detailed work, and support they provided for the RVSM implementation and ongoing operations.
List of Participants

<table>
<thead>
<tr>
<th>STATE/NAME</th>
<th>DESIGNATION/ADDRESS</th>
<th>CONTACT DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Ron Rigney</td>
<td>Business Development Manager
Brisbane Centre
Air services Australia
Locked Bag 747
Eagle Farm QLD 4009
Australia</td>
<td>Tel: 61-7-3866 3487
Fax: 61-7-3866 3599
E-mail: ron.rigney@airservicesaustralia.com</td>
</tr>
<tr>
<td>BANGLADESH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Md. Mostafizur Rahman</td>
<td>Director (Planning)
Civil Aviation Authority of Bangladesh
Room No.305
Civil Aviation Head Quarters
Kurmitola
Dhaka—1229
Bangladesh</td>
<td>Tel: +880 2 8914608
Fax:: +880 2 8914709
E Mail : dplncaab@acessstel.net</td>
</tr>
<tr>
<td>Mr. Rabindra Kumar Das</td>
<td>Asstt. Director (ATS)
Civil Aviation Authority of Bangladesh
ATS Division
Civil Aviation Head Quarters
Kurmitola
Dhaka—1229
Bangladesh</td>
<td>Tel : + 88 02 8914810 to 14 ext 3488
Res: +88 02 8962135
Fax : + 88 02 8912322
E Mail : dziacaab@acessstel.net</td>
</tr>
<tr>
<td>CHINA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Zhang Yong</td>
<td>Southwestern Regional Air Traffic Management Bureau, CAAC
People`s Republic of China</td>
<td>Tel: +
Fax: +</td>
</tr>
<tr>
<td>STATE/NAME</td>
<td>DESIGNATION/ADDRESS</td>
<td>CONTACT DETAILS</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Mr. Tai Feng</td>
<td>Southwestern Regional Air Traffic Management Bureau, CAAC</td>
<td>Tel: +</td>
</tr>
<tr>
<td></td>
<td>People’s Republic of China</td>
<td>Fax: +</td>
</tr>
<tr>
<td>Mr. Zhang Jun</td>
<td>Kunming Air Traffic Management Center, CAAC</td>
<td>Tel: +</td>
</tr>
<tr>
<td></td>
<td>People's Republic of China</td>
<td>Fax: +</td>
</tr>
<tr>
<td>Mr. Lei Guisheng</td>
<td>Kunming Air Traffic Management Center, CAAC</td>
<td>Tel: +</td>
</tr>
<tr>
<td></td>
<td>People's Republic of China</td>
<td>Fax: +</td>
</tr>
<tr>
<td>INDIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. K. Gohain</td>
<td>Joint Director General</td>
<td>Tel: +91 11 2462 9539</td>
</tr>
<tr>
<td></td>
<td>Department of Civil Aviation</td>
<td>Mobile: +91 98 9100 9091</td>
</tr>
<tr>
<td></td>
<td>Technical Centre, Opposite Safdarjung Airport</td>
<td>Fax: +91 11 2463 3192</td>
</tr>
<tr>
<td></td>
<td>New Delhi 110003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Mr. M.C. Dangi</td>
<td>DGM (Ops)</td>
<td>Tel: +91 11 2465 2649</td>
</tr>
<tr>
<td></td>
<td>Airports Authority of India</td>
<td>Fax: +91 11 2461 1078</td>
</tr>
<tr>
<td></td>
<td>Rajiv Gandhi Bhawan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safdarjung Airport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Delhi, India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Mr. Bijoy Cherian</td>
<td>Senior Manager (ATC)</td>
<td>Tel: +91 11 2463 2950 ext 2250</td>
</tr>
<tr>
<td></td>
<td>Airports Authority of India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rajiv Gandhi Bhawan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safdarjung Airport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Delhi, India</td>
<td></td>
</tr>
<tr>
<td>Capt. A.K. Govil</td>
<td>Dy. GM (OPS)</td>
<td>Tel: +91-11-26141072, 26145591</td>
</tr>
<tr>
<td></td>
<td>Indian Airlines Ltd.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safdarjung Airport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Delhi, India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E Mail: arua32@hotmail.com</td>
<td></td>
</tr>
<tr>
<td>STATE/NAME</td>
<td>DESIGNATION/ADDRESS</td>
<td>CONTACT DETAILS</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Capt. A.Kaul</td>
<td>GM (OPS) ADMN Air Sahara 3 Gopal Das Bhawan Connaught Place New Delhi India</td>
<td>Tel: + 2678 6393 98100 16991 Fax: +2678 2573 E Mail : captkaul@hotmail.com</td>
</tr>
<tr>
<td>Mr. Ajay Agarwal</td>
<td>Air India Operations IGI Airport Trml II New Delhi 110037 India</td>
<td>Tel: +91 11 25654272 Fax: +91 11 25652834 E Mail: AAgarwal@airindia.com</td>
</tr>
<tr>
<td>MALAYSIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Richard Tan Hock Chye</td>
<td>Air Traffic Control Officer Department of Civil Aviation Malaysia Block B, Air Traffic Control Centre Sultan Abdul Aziz Shah Airport 47200 Subang, Selangor Durul Ehsan Malaysia</td>
<td>Tel: +603-7847 3573 Fax: +603-7847 3572 E-mail: bmrich@hotmail.com</td>
</tr>
<tr>
<td>Capt. Awtarjet Singh</td>
<td>Fleet Manager B747 Malaysia Airlines Ground Floor East Wing Flight Management Building 64000 Sepang Kuala Lumpur International Airport Malaysia</td>
<td>Tel: +603-85255308/55329 Fax: +603-85285313 E-mail: jets@mas.com.my</td>
</tr>
<tr>
<td>MYANMAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U Ohn Tin</td>
<td>Regional Air Traffic Control Officer Department of Civil Aviation Headquarters Building Yangon International Airport Mingaladon 11021 Myanmar</td>
<td>Tel: 095-1-663838 Fax: 095-1-665124 E-mail: dca.myanmar@mptmail.net.mm</td>
</tr>
<tr>
<td>STATE/NAME</td>
<td>DESIGNATION/ADDRESS</td>
<td>CONTACT DETAILS</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| U Aung Zaw Thein | Air Traffic Control Officer (Grade I)
Department of Civil Aviation
Headquarters Building
Yangon International Airport
Mingaladon 11021
Myanmar | Tel: 095-1-663838
Fax: 095-1-665124
E-mail: dca.myanmar@mptmail.net.mm |
| NEPAL | Mr. Rajesh Chitrakar | Senior Officer, TIACAO
Civil Aviation Authority of Nepal
Tribhuvan International Airport
Kathmandu
Nepal | Tel: 977-1-5526082
Fax: 977-1-4262516
E-mail: rclocal@hotmail.com |
| | Mr. Chakrapani Dahal | Senior Officer, TIACAO
Civil Aviation Authority of Nepal
Tribhuvan International Airport
Kathmandu
Nepal | Tel: 977-1-2060042
E-mail: dahalcp@hotmail.com |
| PAKISTAN | Mr. Naim Rashid Khan | Corporate Manager Air Traffic Services
HQCAA
Terminal-1 Jinnah International Airport
Karachi—75200
Pakistan | Tel: +92-21-9248036
Fax: +92-21-9248758
Telex : 29534DGCA PK
E-Mail : gmats@cyber.net.pk |
| SINGAPORE | Mr. Sydney Maniam | Head (ATS)
Civil Aviation Authority of Singapore
Singapore Aviation Academy
1 Aviation Drive
Singapore 499867 | Tel: 65-6540 6247
Fax: 65-6542 9890
E-mail: sydney_maniam@caas.gov.sg |
<table>
<thead>
<tr>
<th>STATE/NAME</th>
<th>DESIGNATION/ADDRESS</th>
<th>CONTACT DETAILS</th>
</tr>
</thead>
</table>
| **Mr. Kuah Kong Beng** | Head, ATC Operations
Civil Aviation Authority of Singapore
Singapore Changi Airport
P.O. Box 1
Singapore 918141 | Tel: +65-6541-2405
Fax: +65-6545-6516
E-mail: kuah_kong_beng@caas.gov.sg |
| **Mr. Samuel Ko Oon Kok** | ATC Manager
Civil Aviation Authority of Singapore
Singapore Air Traffic Control Centre
60 Biggin Hill Road
Singapore 509950 | Tel: +65-6541-2668
Fax: +65-6545-6252
E-mail: ko_oon_kok@caas.gov.sg |
| **SRI LANKA** | | |
| **Mr. C.M. De Silva** | Chief Air Traffic Controller
Airport and Aviation Services (Sri Lanka) Limited
Bandaranaike International Airport
Katunayake
Sri Lanka | Tel: +(94) 112252062
Fax: +(94) 112252062 |
| **THAILAND** | | |
| **Mr. Kamol Pulperm** | Senior Air Transport Technical Officer
Airport Standards and Air Navigation Facilitating Division
Department of Civil Aviation
71 Ngarmduplee, Rama 4 Road
Bangkok 10120, Thailand | Tel: 66-2-286 8159
Fax: 66-2-286 8159
E-mail: kamol_pulperm@yahoo.com |
| **Capt. Werasak Wiroonpetch** | Manager, International Aviation Affairs and Development Department
Thai Airways International Public Company Ltd.
89 Vibhavadi Rangsit Road
Bangkok 10900, Thailand | Tel: +66-2-545 2665
Fax: +66-2-545 3849
E-mail: werasak.w@thaiairways.com |
<table>
<thead>
<tr>
<th>State/Name</th>
<th>Designation/Address</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Aumphol Tuatulanon</td>
<td>Aircraft Engineer, Avionics System Group Technical Department, Engineering (TE-E) Thai Airways International Public Company Ltd. Bangkok International Airport Bangkok 10210, Thailand</td>
<td>Tel: +66-2-563 8261 Fax: +66-2-504 3360 E-mail: aumphol.t@thaiairways.com</td>
</tr>
<tr>
<td>Mr. Nopadol Sang-ngurn</td>
<td>Executive Expert Aeronautical Radio of Thailand Ltd. (AEROTHAI) 102 Ngarmduplee Thungmahamek Bangkok 10120, Thailand</td>
<td>Tel: 66-2-285 9054 Fax: 66-2-285 9488 E-mail: nopadol@aerothai.co.th</td>
</tr>
<tr>
<td>Dr. Paisit Herabat</td>
<td>Executive Officer, System Engineering AEROTHAI 102 Ngamduplee Thungmahamek Bangkok 10120, Thailand</td>
<td>Tel: +66-2-285 9191 Fax: +66-2-285 9617 E-mail: paisit@aerothai.co.th</td>
</tr>
<tr>
<td>Mr. Nuttakajorn Yanpirat</td>
<td>Systems Engineer AEROTHAI 102 Ngamduplee Thungmahamek Bangkok 10120, Thailand</td>
<td>Tel: +66-2-287 8311 Fax: +66-2-285 9486 E-mail: nuttakajorn.ya@aerothai.co.th</td>
</tr>
<tr>
<td>Mr. Polawat Chootai</td>
<td>Air Traffic Control Manager Air Traffic Services Standards Department Aeronautical Radio of Thailand Ltd 102 Ngamduplee Thungmahamek Bangkok 10120, Thailand</td>
<td>Tel: +66-2-287 8211 Mobile: +66-6-526 6865 Fax: +66-2-285 9648 E-mail: polawat.ch@aerothai.co.th</td>
</tr>
<tr>
<td>Mr. Tinnagorn Choowong</td>
<td>Air Traffic Control Manager Bangkok Area Control Centre Aeronautical Radio of Thailand Ltd 102 Ngamduplee Thungmahamek Bangkok 10120, Thailand</td>
<td>Tel: +66-2-285 9975 Mobile: +66-9-8166486 Fax: +66-2-285 9406 E-mail: tinnagorn.ch@aerothai.co.th</td>
</tr>
<tr>
<td>STATE/NAME</td>
<td>DESIGNATION/ADDRESS</td>
<td>CONTACT DETAILS</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Mr. Suvichan Sthitgitpichead | **Air Traffic Control Manager**
Bangkok Area Control Centre
Aeronautical Radio of Thailand Ltd
102 Ngamdupee
Thungmahamek
Bangkok 10120, Thailand | Tel: +66-2-285 9975
Mobile: +66-1-7764141
Fax: +66-2-285 9406
E-mail: suvichan.st@aerothai.co.th |
| Mr. Jirasak Netiprawat | **Air Traffic Control Manager**
Bangkok Area Control Centre
Aeronautical Radio of Thailand Ltd
102 Ngamdupee
Thungmahamek
Bangkok 10120, Thailand | Tel: +66-2-285 9178
Fax: +66-2-285 9406
E-mail: jirasak.ne@aerothai.co.th |
| **UNITED STATES** | | |
| Mr. Kevin Chamness | **Program Manager**
Oceanic Service Improvements
800 Independence Ave.
Washington, D.C. 20591
U.S.A. | Tel: +1-202-385 8427
E-mail: Kevin.chamness@faa.gov |
| **IATA** | | |
| Mr. Soon Boon Hai | **Assistant Director, Safety Operations & Infrastructure – Asia/Pacific**
International Air Transport Association
77 Robinson Road
#05-00 SIA Building
Singapore 068896 | Tel: +65-6239 7267
Fax: +65-6536 6267
E-mail: soonbh@iata.org |
| Mr. Owen Dell | **Manager, International Operations**
Cathay Pacific Airways Limited
International Affairs Department
9/F Central Tower, Cathay Pacific City
8 Scenic Road
Hong Kong International Airport
Lantau, Hong Kong, China | Tel: +852 2747 8829
Fax: +852 2141 8829
SITA: HKGVLCA
E-mail: owen_dell@cathaypacific.com |
List of Participants

<table>
<thead>
<tr>
<th>STATE/NAME</th>
<th>DESIGNATION/ADDRESS</th>
<th>CONTACT DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capt. Aric Oh</td>
<td>Deputy Chief Pilot (Technical) Flight Operations Technical SIA Training Centre, 04-C 720 Upper Changi Road East Singapore 486852</td>
<td>Tel: +65-6540 3694 Fax: +65-6542 9564 E-mail: aric.oh@singaporeair.com.sg</td>
</tr>
<tr>
<td>IFALPA</td>
<td>Capt. Suresh Menon Regional Vice President Asia/East IFALPA 24, Pasir Ris Heights Singapore 519231</td>
<td>Tel: +65-6582 2593 Fax: +65-6584 8869 E-mail: menon@pacific.net.sg</td>
</tr>
<tr>
<td>ICAO</td>
<td>Mr. David J. Moores Regional Officer, ATM ICAO Asia and Pacific Office 252/1 Vibhavadi Rangsit Road Ladyao, Chatuchak Bangkok 10900, Thailand</td>
<td>Tel: +66-2-537 8189 ext 151 Fax: +66-2-537 8199 E-mail: dmoores@bangkok.icao.int icao_apac@bangkok.icao.int</td>
</tr>
<tr>
<td></td>
<td>Mr. Andrew Tiede Regional Officer, ATM ICAO Asia and Pacific Office 252/1 Vibhavadi Rangsit Road Ladyao, Chatuchak Bangkok 10900, Thailand</td>
<td>Tel: +66-2-537 8189 ext 152 Fax: +66-2-537 8199 E-mail: atiede@bangkok.icao.int icao_apac@bangkok.icao.int</td>
</tr>
<tr>
<td></td>
<td>Mr. Kyotaro Harano Regional Officer, ATM ICAO Asia and Pacific Office 252/1 Vibhavadi Rangsit Road Ladyao, Chatuchak Bangkok 10900, Thailand</td>
<td>Tel: +66-2-537 8189 ext 159 Fax: +66-2-537 8199 E-mail: kharana@bangkok.icao.int icao_apac@bangkok.icao.int</td>
</tr>
</tbody>
</table>
LIST OF WORKING PAPERS (WPs) AND INFORMATION PAPERS (IPs)

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>AGENDA</th>
<th>WORKING PAPERS</th>
<th>PRESENTED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP/1</td>
<td>1</td>
<td>Provisional Agenda</td>
<td>Chairman</td>
</tr>
<tr>
<td>WP/2</td>
<td></td>
<td>WITHDRAWN</td>
<td></td>
</tr>
<tr>
<td>WP/3</td>
<td>6</td>
<td>Implementation of the Reduced Vertical Separation Minimum (RVSM) in Bay of Bengal and Beyond</td>
<td>Secretariat</td>
</tr>
<tr>
<td>WP/4</td>
<td>8</td>
<td>New Provisions Concerning RVSM Phraseologies in the PANS-ATM</td>
<td>Secretariat</td>
</tr>
<tr>
<td>WP/5</td>
<td>2</td>
<td>RVSM Implementation in Indian FIRs</td>
<td>India</td>
</tr>
<tr>
<td>WP/6</td>
<td>4</td>
<td>Summary of the Airspace Safety Review for the RVSM Implementation in Asia Region – Bay of Bengal Airspace</td>
<td>MAAR</td>
</tr>
<tr>
<td>WP/7</td>
<td>4</td>
<td>Summary of the Second Meeting of the Regional Airspace Safety Monitoring Advisory Group (RASMAG/2)</td>
<td>Secretariat</td>
</tr>
<tr>
<td>WP/8</td>
<td>5</td>
<td>Transition Arrangement between Kunming and Yangon ACCs</td>
<td>Secretariat</td>
</tr>
<tr>
<td>WP/9</td>
<td>5</td>
<td>Reducing Delays and Congestion Problems for Long Haul Westbound Flights</td>
<td>IATA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>AGENDA</th>
<th>INFORMATION PAPERS</th>
<th>PRESENTED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP/1</td>
<td></td>
<td>List of Working Papers (WPs) and Information Papers (IPs)</td>
<td>Secretariat</td>
</tr>
<tr>
<td>IP/2</td>
<td>2</td>
<td>Review of the Outcomes of the Twenty-second Meeting of the ICAO RVSM Task Force on the Operation of Different RVSM Flight Level Orientation Schemes in the Asia/Pacific Region</td>
<td>Secretariat</td>
</tr>
<tr>
<td>IP/3</td>
<td>2</td>
<td>Update on RVSM Operations in Kuala Lumpur FIR</td>
<td>Malaysia</td>
</tr>
</tbody>
</table>

B -1
AGENDA

Agenda Item 1: Adoption of proposed agenda

Agenda Item 2: Operational Considerations
- Review RVSM operations in Bay of Bengal and Beyond
- Identify and address difficulties (if any) encountered by ATS providers and operators
- Transition issue

Agenda Item 3: Airworthiness and Aircraft Operations
- Review issues on airworthiness and aircraft operations relating to RVSM approval

Agenda Item 4: Safety and Airspace Monitoring
- Review safety assessment of RVSM operations in Bay of Bengal and Beyond
- Complete safety oversight arrangements for RVSM operations in Bay of Bengal and Beyond

Agenda Item 5: Implementation Management Considerations
- Review activities relating to implementation of RVSM

Agenda Item 6: Any Other Business

Agenda Item 7: Future Work

Tel.: +1 (514) 954-8219 ext. 6711
Ref.: AN 13/2.1-04/72 30 July 2004

Subject: Approval of Amendment 3 to the PANS-ATM

Action required: a) Implementation of the amendment on 25 November 2004; b) Publication of any differences as of 25 November 2004

Sir/Madam,

1. I have the honour to inform you that the Air Navigation Commission, acting under delegated authority, at the tenth meeting of its 166th Session, on 3 June 2004, approved Amendment 3 to the Procedures for Air Navigation Services — Air Traffic Management, Fourteenth Edition (PANS-ATM, Doc 4444) for applicability on 25 November 2004. The amendment was approved on 29 June 2004 by the President of the Council on behalf of the Council in accordance with established procedure.

3. The amendment introduces new or amended provisions concerning:
 a) runway incursions and reporting thereon;
 b) phraseologistics dealing with 8.33 kHz channel spacing, reduced vertical separation minimum (RVSM) and GNSS; and
 c) the transmission of special air-reports and other meteorological information.
4. The inclusion of new phraseologies for 8.33 kHz channel spacing and RVSM in Amendment 3 to the PANS-ATM obviates the need for similar provisions in the Regional Supplementary Procedures (SUPPs, Doc 7030). A consequential amendment, deleting the corresponding provisions from the SUPPs with effect from 25 November 2004, is therefore in progress. As of that date, the PANS-ATM provisions will supersede the SUPPs.

5. Copies of the interim edition of the amendment are being sent to you under separate cover. The interim edition contains the text as it was approved by the Council and is being sent to you pending the issue of the replacement pages for the PANS-ATM in which the amendment will be incorporated. The replacement pages are expected to be forwarded to you in October 2004.

6. In accordance with the decision of the 26th Session of the Assembly, I would like to bring to your attention the Organization's long-standing practice of providing documentation to States upon request. Accordingly, the relevant working papers on Amendment 3 to the PANS-ATM and corresponding minutes of the Council and the Air Navigation Commission proceedings can be made available. In light of the costs involved, however, only one copy of such documents will normally be provided.

7. Your Government is invited by the Council to implement the provisions of the PANS-ATM as amended. In this connection, I draw your attention to the decision taken by the Council, on 1 October 1973, to discontinue the publication of differences in Supplements to the PANS documents and, instead, to request States to publish up-to-date lists of significant differences from PANS documents in their Aeronautical Information Publications.

8. May I, therefore, invite your Government to publish in your Aeronautical Information Publication a list of any significant differences which will exist on 25 November 2004 between the amended provisions of the PANS-ATM and your national regulations and practices.

Accept, Sir/Madam, the assurances of my highest consideration.

[Signature]

Taïeb Chérif
Secretary General

Under separate cover:

Interim edition of Amendment 3 to the PANS-ATM
AMENDMENT No. 3
TO THE
PROCEDURES
FOR
AIR NAVIGATION SERVICES

AIR TRAFFIC MANAGEMENT
(Doc 4444)

INTERIM EDITION
The text of Amendment No. 3 to the PANS-ATM (Doc 4444) was approved by the President of the Council of ICAO on behalf of the Council on 29 June 2004 for applicability on 25 November 2004. This interim edition is distributed to facilitate implementation of the amendment by States. Replacement pages incorporating Amendment No. 3 are expected to be distributed in October 2004.

JULY 2004
INTERNATIONAL CIVIL AVIATION ORGANIZATION
NOTES ON THE PRESENTATION OF THE AMENDMENT TO THE PANS-ATM

The text of the amendment is arranged to show deleted text with a line through it and new text highlighted with grey shading, as shown below:

1. Text to be deleted is shown with a line through it: text to be deleted

2. New text to be inserted is highlighted with grey shading. new text to be inserted

3. Text to be deleted is shown with a line through it followed by the replacement text, which is highlighted with grey shading. new text to replace existing text
PROCEDURES FOR AIR NAVIGATION SERVICES — AIR TRAFFIC MANAGEMENT
(PANS-ATM, DOC 4444)
FOURTEENTH EDITION

CHAPTER 1. DEFINITIONS

...

Ground visibility. The visibility at an aerodrome as reported by an accredited observer or automatic systems.

Runway incursion. Any occurrence at an aerodrome involving the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft.

Visibility. Visibility for aeronautical purposes is the greater of:

...

Note 1. — The two distances have different values in air of a given extinction coefficient, and the latter b) varies with the background illumination. The former a) is represented by the meteorological optical range (MOR).

Note 2. — The definition applies to the observations of visibility in local routine and special reports, to the observations of prevailing and minimum visibility reported in METAR and SPECI and to the observations of ground visibility.

...

CHAPTER 4. GENERAL PROVISIONS FOR AIR TRAFFIC SERVICES

...

4.12.6 Forwarding of meteorological information

4.12.6.1 When receiving ADS reports which contain a meteorological information block, air traffic services units shall relay the basic ADS and meteorological information blocks without delay to the world area forecast centres (WAFCs) and, as appropriate, to regional area forecast centres (RAFCs).

4.12.6.2 When receiving special air-reports by data link communications, air traffic services units shall forward them without delay to their associated meteorological watch office, and the WAFCs and, as appropriate, to RAFCs.
CHAPTER 7. PROCEDURES FOR AERODROME CONTROL SERVICE

7.3.1.4 RUNWAY INCURSION OR OBSTRUCTED RUNWAY

7.3.1.4.1 In the event the aerodrome controller observes, after a take-off clearance or a landing clearance has been issued, becomes aware of a runway incursion or the imminent occurrence thereof, or the existence of any obstruction on or in close proximity to the runway likely to impair the safety of an aircraft taking off or landing, such as a runway incursion by an aircraft or vehicle, or animals or flocks of birds on the runway, appropriate action shall be taken as follows:

a) in all cases inform the aircraft concerned of the obstruction and its location on the runway; cancel the take-off clearance for a departing aircraft;

b) cancel the take-off clearance for an aircraft which has not started to roll; instruct a landing aircraft to execute a go-around or missed approach;

c) instruct a landing aircraft to go around; in all cases inform the aircraft of the runway incursion or obstruction and its location in relation to the runway.

Note: Animals and flocks of birds may constitute an obstruction with regard to runway operations. In addition, an aborted take-off or a go-around executed after touchdown may expose the aeroplane to the risk of overrunning the runway. Moreover, a low altitude missed approach may expose the aeroplane to the risk of a tail strike. Pilots may, therefore, have to exercise their judgement in accordance with Annex 2, 2.4 concerning the authority of the pilot-in-command of an aircraft.

7.3.1.4.2 Following any occurrence involving an obstruction on the runway or a runway incursion, pilots and controllers shall complete an air traffic incident report in accordance with the ICAO model air traffic incident report form.

CHAPTER 9. FLIGHT INFORMATION SERVICE AND ALERTING SERVICE

9.1 Flight information service

9.1.3 Transmission of information

9.1.3.2 Transmission of special air-reports, SIGMET and AIRMET information

9.1.3.2.1 Appropriate SIGMET and AIRMET information, as well as special air-reports which have not been used for the preparation of a SIGMET, shall be disseminated to aircraft by one or more of the means specified in 9.1.3.1.1 above as determined on the basis of regional air navigation agreements. Special air-reports shall be disseminated to aircraft for a period of 60 minutes after their issuance.
CHAPTER 11. AIR TRAFFIC SERVICES MESSAGES

11.4.3 Flight information messages

11.4.3.1.3 In meteorological reports disseminated beyond the aerodrome METAR and SPECI, the visibility shall be representative of the aerodrome and its immediate vicinity. In the case of significant directional variations in visibility:

a) the lowest prevailing visibility shall be reported; and

b) additional values the lowest visibility shall be given reported with indication of the direction of observation.

CHAPTER 12. PHRASEOLOGIES

12.2 GENERAL

12.2.3 Section 12.3 includes phrases for use by pilots, ATS personnel and other ground personnel. Phraseology for the movement of vehicles, other than tow-tractors, on the manoeuvring area are not listed separately as the phraseology associated with the movement of aircraft is applicable, with the exception of taxi instructions, in which case the word “PROCEED” shall be substituted for the word “TAXI” when communicating with vehicles:

12.2.4 During operations in or vertical transit through reduced vertical separation minimum (RVSM) airspace with aircraft not approved for RVSM operations, pilots shall report non-approved status in accordance with 12.3.1.11.c as follows:

a) at initial call on any channel within RVSM airspace;

b) in all requests for level changes; and

c) in all read-backs of level clearances.

12.2.5 Air traffic controllers shall explicitly acknowledge receipt of messages from aircraft reporting RVSM non-approved status.

12.2.6 Phraseology for the movement of vehicles, other than tow-tractors, on the manoeuvring area shall be the same as those used for the movement of aircraft, with the exception of taxi instructions, in which case the word “PROCEED” shall be substituted for the word “TAXI” when communicating with vehicles.
12.3 ATC PHRASEOLOGIES

12.3.1 General

Circumstances

<table>
<thead>
<tr>
<th>12.3.1.1</th>
<th>Phraseologies</th>
</tr>
</thead>
</table>

8.33 kHz CHANNEL SPACING

Note: In this paragraph, the term "point" is used only in the context of naming the 8.33 kHz channel spacing concept and does not constitute any change to existing ICAO provisions or phraseology regarding the use of the term "decimal".

- **a)** CONFIRM EIGHT POINT THREE THREE
- **b)** AFFIRM EIGHT POINT THREE THREE
- **c)** NEGATIVE EIGHT POINT THREE THREE
- **d)** CONFIRM UHF
- **e)** AFFIRM UHF
- **f)** NEGATIVE UHF
- **g)** CONFIRM EIGHT POINT THREE THREE EXEMPTED
- **h)** AFFIRM EIGHT POINT THREE THREE EXEMPTED
- **i)** NEGATIVE EIGHT POINT THREE THREE EXEMPTED
- **j)** DUE EIGHT POINT THREE THREE REQUIREMENT

* Denotes pilot transmission

... to request confirmation of 8.33 kHz capability

... to indicate 8.33 kHz capability

... to indicate lack of 8.33 kHz capability

... to request UHF capability

... to indicate UHF capability

... to indicate lack of UHF capability

... to request status in respect of 8.33 kHz exemption

... to indicate 8.33 kHz exempted status

... to indicate 8.33 kHz non-exempted status

... to indicate that a certain clearance is given because otherwise a non-equipped and/or non-exempted aircraft would enter airspace of mandatory carriage
12.3 ATC PHRASEOLOGIES

12.3.1 General

...
Renumber remaining paragraphs accordingly.

<table>
<thead>
<tr>
<th>Circumstances</th>
<th>Phraseologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.1.8 ADDITIONAL REPORTS</td>
<td>a) REPORT PASSING (significant point);</td>
</tr>
<tr>
<td></td>
<td>b) REPORT (distance) FROM (name of DME station) DME (or significant point);</td>
</tr>
<tr>
<td></td>
<td>c) REPORT PASSING (three digits) RADIAL (name of VOR) VOR;</td>
</tr>
<tr>
<td></td>
<td>d) REPORT DISTANCE FROM (significant point);</td>
</tr>
<tr>
<td></td>
<td>e) REPORT DISTANCE FROM (name of DME station) DME.</td>
</tr>
</tbody>
</table>

12.3.1.10 OPERATIONAL STATUS OF VISUAL AND NON-VISUAL AIDS	a) *(specify visual or non-visual aid)* RUNWAY *(number)* *(description of deficiency)*;
	b) *(type)* LIGHTING *(unserviceability)*;
	c) CBAS/SBAS/MLS/ILS CATEGORY *(category)* *(serviceability status)*;
	d) TAXIWAY LIGHTING *(description of deficiency)*;
	e) *(type of visual approach slope indicator)* RUNWAY *(number)* *(description of deficiency)*.

12.3.1.11 REDUCED VERTICAL SEPARATION MINIMUM (RVSM) OPERATIONS	a) **CONFIRM RVSM APPROVED**
	b) **AFFIRM RVSM**
	c) **NEGATIVE RVSM** *(supplementary information e.g. State Aircraft)*

Note: See 12.2.4 and 12.2.5 for procedures relating to operations in RVSM airspace by aircraft with non-approved status.
12.3.1.13 Degradation of Aircraft Navigation Performance

Unable RNP (specific type) (or RNAV) [Due to (reason e.g. loss of RAIM or RAIM Alert)].

12.3.2.4 Specification of Cruising Levels

a) CROSS (significant point) AT (or ABOVE, or BELOW) (level);

b) CROSS (significant point) AT (time) OR LATER (or BEFORE) AT (level);

c) CRUISE CLIMB BETWEEN (levels) (or ABOVE level);

d) CROSS (distance) DME [(direction)] OF (name of DME station) (or distance) [(direction)] OF (significant point) AT (or ABOVE or BELOW) (level).

12.3.5 Coordination between ATS units

12.3.5.8 Reduced Vertical Separation Minimum (RVSM) Operations

... to verbally supplement estimate messages of aircraft non-approved for RVSM or to verbally supplement an automated estimate message exchange that does not automatically transfer information from Item 18 of the flight plan followed by supplementary information as appropriate

... to communicate the cause of a contingency relating to an aircraft that is unable to conduct RVSM operations due to severe turbulence or other severe meteorological phenomena or equipment failure, as applicable

a) NEGATIVE RVSM [(supplementary information e.g. State Aircraft)]

b) UNABLE RVSM DUE TURBULENCE (or EQUIPMENT) (or applicable)
12.4 RADAR PHRASEOLOGIES

12.4.2 Radar in approach control service

12.4.2.2 Vectoring for ILS and other pilot-interpreted aids

... when a pilot wishes to be positioned a specific distance from touchdown

... instructions and information

	a) POSITION (number) KILOMETRES (or MILES) from (fix). TURN LEFT (or RIGHT) HEADING (three digits);
	b) YOU WILL INTERCEPT (radio aid or track) (distance) FROM (significant point or TOUCHDOWN);
	c) REQUEST (distance) FINAL;
	d) CLEARED FOR (type of approach) APPROACH RUNWAY (number);
	e) REPORT ESTABLISHED [ON MLS APPROACH TRACK] or [ON ILS (LOCALIZER) or (GLIDE PATH)] REPORT ESTABLISHED ON [ILS LOCALIZER] (or ON GBAS/SBAS/MLS APPROACH COURSE);
	f) CLOSING FROM LEFT (or RIGHT) [REPORT ESTABLISHED];
	g) TURN LEFT (or RIGHT) HEADING (three digits) [TO INTERCEPT] or [REPORT ESTABLISHED];
	h) EXPECT VECTOR ACROSS (localizer course or radio aid) (reason);
	i) THIS TURN WILL TAKE YOU THROUGH (localizer course or radio aid) [reason];
	j) TAKING YOU THROUGH (localizer course or radio aid) [reason];
	k) MAINTAIN (altitude) UNTIL GLIDE PATH INTERCEPTION;
	l) REPORT ESTABLISHED ON GLIDE PATH;
	m) INTERCEPT (localizer course or radio aid) [REPORT ESTABLISHED].

* Denotes pilot transmission.
12.4.2.3 MANOEUVRE DURING INDEPENDENT AND DEPENDENT PARALLEL APPROACHES

a) CLEARED FOR ILS (or MLS) [type of approach] APPROACH RUNWAY (number) LEFT (or RIGHT);

b) YOU HAVE CROSSED THE LOCALIZER (or GBAS/SBAS/MLS FINAL APPROACH TRACK COURSE), TURN LEFT (or RIGHT) IMMEDIATELY AND RETURN TO THE LOCALIZER (or GBAS/SBAS/MLS FINAL APPROACH TRACK COURSE);

c) ILS (or MLS) RUNWAY (number) LEFT (or RIGHT) LOCALIZER (or MLS) FREQUENCY IS [frequency];

d) TURN LEFT (or RIGHT) [number] DEGREES (or HEADING) [three digits] IMMEDIATELY TO AVOID TRAFFIC [DEVIATING FROM ADJACENT APPROACH], CLIMB TO [altitude];

e) CLIMB TO [altitude] IMMEDIATELY TO AVOID TRAFFIC [DEVIATING FROM ADJACENT APPROACH] [further instructions].

... for avoidance action when an aircraft is observed penetrating the NTZ

... for avoidance action below 120 m (400 ft) above the runway threshold elevation where parallel approach obstacle assessment surfaces (PAOAS) criteria are being applied

CHAPTER 16. MISCELLANEOUS PROCEDURES

16.3 AIR TRAFFIC INCIDENT REPORT

16.3.1 An air traffic incident report shall be submitted, normally to the air traffic services unit concerned, for incidents specifically related to the provision of air traffic services involving such occurrences as aircraft proximity (AIRPROX), obstructions on runways, runway incursions, or other serious difficulty resulting in a hazard to aircraft, caused by, among others, faulty procedures, non-compliance with procedures, or failure of ground facilities.
APPENDIX 4. AIR TRAFFIC INCIDENT REPORT

1. ICAO model air traffic incident report form

<table>
<thead>
<tr>
<th>A — AIRCRAFT IDENTIFICATION</th>
<th>B — TYPE OF INCIDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIRPROX/ OBSTRUCTION ON RUNWAY/RUNWAY</td>
</tr>
<tr>
<td></td>
<td>INCISION / PROCEDURE / FACILITY</td>
</tr>
</tbody>
</table>

— END —
LETTER OF AGREEMENT
BETWEEN KUNMING ACC AND YANGON ACC

Subject: Procedures for Air Traffic Control Coordination between Kunming ACC and Yangon ACC.

1. Scope

1.1 The procedures detailed below apply to air traffic operating between Kunming ACC and Yangon ACC on ATS route A599 via LINSO, and are to be executed accordingly by Kunming ACC and Yangon ACC.

2. Purpose

This letter of agreement defines the co-ordination and transfer of control procedures which was agreed upon between Kunming ACC and Yangon ACC.

3. SEPARATION MINIMA

3.1 Vertical and lateral separations for the two Flight Information Regions are subject to the airspace designation.

The reduced vertical separation minimum (RVSM) of 1000 feet shall be applied between RVSM approved aircraft operating between FL290 and FL410 inclusive and Conventional vertical separation minimum (CVSM) of 2000 feet shall be applied between non-RVSM approved aircraft, non-RVSM and RVSM approved aircraft within Yangon FIR. CVSM with Metric System shall be applied to aircraft operating within Kunming FIR.

3.2 Longitudinal Time Separation minimum on the ATS route A599 shall be 10 minutes.

4. ATC CLEARANCE LIMIT

4.1 In all cases where co-ordination between the two Area Control Centers can be achieved before departure or prior to the transfer of control points after airborne, the clearance limit shall be the airport of destination.

4.2 Where co-ordination cannot be achieved in the event of failure of ATS Direct Speech Circuit, the clearance limit shall be the transfer of control point. If co-ordination can subsequently be achieved a revision to the clearance is to be issued according to PARA 4.1.

5. COMMUNICATIONS

5.1 An ATS Direct Speech Circuit between ACCs shall be provided on 24-hour basis. The number to be dialed by Yangon ACC is 6212, and by Kunming ACC is 7500/7501.

5.2 A direct radio Tele-printer circuit between the two ACCs shall be provided and operational on 24-hour basis for the use of exchanging messages.
5.3 In the event of ATS Direct Speech Circuit failure notification should be made using radio Telemprinter circuit utilizing priority prefix DD or IDD phone.

Kunming ACC 86 871 3136505; 86 871 7112833

Yangon ACC 95 1 666539; 95 1 662707

5.4 Voice Recorder shall be served for the recording/replaying purposes at both Kunming ACC and Yangon ACC, be kept for not less than 30 days.

6. CO-ORDINATION PROCEDURES AND TRANSFER OF CONTROL

6.1 Transfer of control point shall be at the common point of FIR boundary which is as follows:

<table>
<thead>
<tr>
<th>ATS Route</th>
<th>TRANSFER OF CONTROL POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A599</td>
<td>LINSO (N23 22.5 E098 55.00)</td>
</tr>
</tbody>
</table>

6.2 For flights originating either from Kunming or from Yangon flight plan should be exchanged as soon as they are available and not later than 30 minutes before departure.

6.3 Yangon ACC shall transfer traffic to Kunming ACC at CVSM with Metric System:

11400m,10200m,9000m,8100m,7500m,6900m

Kunming ACC shall transfer traffic to Yangon ACC at:

12000m,10800m,9600m,8400m,7800m,7200m

6.4 Flight level change from Standard Chinese Metric (Meter) system to ICAO RVSM (Feet) system, or vice versa, shall be made within Yangon FIR. For westbound flight, level change from Standard Chinese Metric (Meter) to ICAO RVSM (Feet) shall be initiated from LINSO and completed before LSO in the territory of Myanmar. For eastbound flight, level change from Feet to Meter shall be initiated from LSO and completed before LINSO in the territory of Myanmar.

6.5 Level changing procedure is shown at MAP.1.

6.6 Transfer of control shall be transmitted in sufficient time preferably not less than 30 minutes by both ACCs in both ways and shall contain information in the following information:

a) The prefix “Estimate/Revision.”(indicate name of transfer point and the type of message.);

b) Aircraft identification;

c) Estimated time over transfer of control point;
d) Flight level;

6.7 Revision to the estimated time at the transfer of control point shall be passed to receiving ACC if the revised estimate differs by 3 minutes or more.

6.8 In the event that contact with the aircraft is not established within 5 minutes after the estimated time over the transfer of control point, the receiving centre shall notify the transferring centre of the fact.

7. DEVIATIONS

Deviation from this Letter of Agreement shall be made only with the concurrence of both parties.

8. REVISION

This letter of agreement shall be revised after co-ordination as and when deemed necessary by either or both parties.

9. IMPLEMENTATION DATE

The date of implementation of this Letter of Agreement which will supercede all previous agreement and amendment thereto on the subject, shall be 1601 UTC on 20 JAN 2005.

Kunming ACC Representative
Mr. Lei Guisheng
Director of ATC Service Department,
Kunming Air Traffic Management Center
Of CAAC
Date: 8 November 2004

Yangon ACC Representative
Mr. Yoa Shu
Deputy Director (Air Traffic Services)
Department of Civil Aviation, Myanmar
Date:
NOTE: Red lines express eastbound level; Blue lines express westbound level.
<table>
<thead>
<tr>
<th>SN</th>
<th>Activity</th>
<th>Start</th>
<th>Complete</th>
<th>Present Status</th>
<th>Group Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify Operational Need</td>
<td>18-Jan-02</td>
<td>30-Nov-02</td>
<td>Completed</td>
<td>ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>2</td>
<td>Agree operational concept for Bay of Bengal and beyond (within ICAO Asia Region)</td>
<td>18-Jan-02</td>
<td>30-Nov-02</td>
<td>Completed</td>
<td>ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>3</td>
<td>Safety Assessment</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>4</td>
<td>Review available summary data (non-compliant aircraft, aberrant aircraft etc)</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>SAM/WG, MAAR, RVSM Task Force</td>
</tr>
<tr>
<td>5</td>
<td>Examine history of height keeping errors related to ATC clearances and assess possible RVSM impact</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>SAM/WG, MAAR, RVSM Task Force</td>
</tr>
<tr>
<td>6</td>
<td>Confirm RVSM risk model assumptions/parameters are consistent with airspace where RVSM is to be applied</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>SAM/WG, MAAR, RVSM Task Force</td>
</tr>
<tr>
<td>7</td>
<td>Conduct simulations to predict occupancy after RVSM implementation</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>SAM/WG, MAAR, RVSM Task Force</td>
</tr>
<tr>
<td>8</td>
<td>Collect weather and turbulence data for analysis - this should include Himalayan standing wave analysis</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>SAM/WG, OPS/AIR, RVSM Task Force</td>
</tr>
<tr>
<td>9</td>
<td>Report monthly large height deviations to APARM/O/MAAR or equivalent monitoring agency (including operational errors)</td>
<td>18-Jan-02</td>
<td>Ongoing</td>
<td>Completed</td>
<td>ATS Providers, Users</td>
</tr>
<tr>
<td>10</td>
<td>Collect traffic sample data for the month of July 2004 for 1-year review of safety oversight</td>
<td>4-Jul-04</td>
<td>31-Aug-04</td>
<td>Completed</td>
<td>ATS Providers</td>
</tr>
<tr>
<td>11</td>
<td>Feasibility Analysis</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>12</td>
<td>Examine the operational factors and workload associated with implementation</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>13</td>
<td>Determination of Requirements (airborne & ground systems)</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>14</td>
<td>States assess the impact of RVSM implementation on controller automation systems (eg equipment suffixes) and plan for upgrades/modifications</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>15</td>
<td>Aircraft & Operator Approval Requirements</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>16</td>
<td>Promulgate the operational approval process</td>
<td>18-Jan-02</td>
<td>1-Jul-02</td>
<td>Completed</td>
<td>OPS/AIR/WG, RVSM Task Force</td>
</tr>
<tr>
<td>17</td>
<td>Notify States when significant changes occur to RVSM documentation</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>OPS/AIR/WG, RVSM Task Force</td>
</tr>
<tr>
<td>18</td>
<td>Perform Rulemaking (if required)</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>19</td>
<td>Recommend State airspace regulatory documentation</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>20</td>
<td>Perform Necessary Industry & International Co-ordination</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>21</td>
<td>Establish target implementation date</td>
<td>18-Jan-02</td>
<td>18-Jan-02</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>22</td>
<td>Report to ATS/AIS/SAR/SG/13</td>
<td>23-Jun-03</td>
<td>31-Jul-03</td>
<td>Completed</td>
<td>RVSM Task Force Chairman</td>
</tr>
<tr>
<td>23</td>
<td>Process Doc 7030 amendment</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>ICAO Regional Office (to include BOB FIRs)</td>
</tr>
<tr>
<td>24</td>
<td>Publish advance AIC</td>
<td>18-Jan-02</td>
<td>31-Jan-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>25</td>
<td>Publish AIP Supplement containing RVSM policy/procedures</td>
<td>18-Jan-02</td>
<td>7-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>26</td>
<td>Review inter-facility coordination procedures</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>27</td>
<td>Finalize changes to Letters of Agreement</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>28</td>
<td>Disseminate information on RVSM policy and procedures through FAA RVSM Website</td>
<td>7-Jun-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>OPS/AIR WG, RVSM Task Force</td>
</tr>
<tr>
<td>29</td>
<td>Approval of Aircraft & Operators</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>30</td>
<td>Establish approved operations readiness targets</td>
<td>18-Jan-02</td>
<td>18-Jan-02</td>
<td>Completed</td>
<td>IATA, ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>31</td>
<td>Assess operator readiness</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>IATA, OPS/AIR/WG</td>
</tr>
<tr>
<td>32</td>
<td>Develop Pilot & ATC Procedures</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>33</td>
<td>Review application of tactical offset procedure to mitigate the effects of wake turbulence and TCAS alerts</td>
<td>18-Jan-02</td>
<td>4-Jul-03</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>SN</td>
<td>Activity</td>
<td>Start</td>
<td>Complete</td>
<td>Present Status</td>
<td>Group Responsible</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>34</td>
<td>Review weather and contingency procedures for applicability under RVSM</td>
<td>18-Jan-02</td>
<td>4-Jul-03</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>35</td>
<td>Publish appropriate Pilot/ATC policy & procedures on RVSM website</td>
<td>18-Jan-02</td>
<td>Ongoing</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>36</td>
<td>Identify transition areas and procedures</td>
<td>3-Sep-03</td>
<td>5-Sep-03</td>
<td>Completed</td>
<td>States, ATC/WG</td>
</tr>
<tr>
<td>37</td>
<td>Conduct simulation modelling to assess impact of RVSM operations</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States, ATC/WG</td>
</tr>
<tr>
<td>38</td>
<td>Report on simulation activity</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>39</td>
<td>Coordinate use of ACAS II (TCAS V.7) for RVSM operations</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>OPS/AIR/WG, RVSM Task Force</td>
</tr>
<tr>
<td>40</td>
<td>Develop procedures for handling non-compliant aircraft (inc ferry & mntce) in ATS documentation</td>
<td>18-Jan-02</td>
<td>30-Sep-03</td>
<td>Completed</td>
<td>OPS/AIR/WG, ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>41</td>
<td>Develop mutually acceptable ATC procedures for non-approved State acft to transit RVSM airspace</td>
<td>18-Jan-02</td>
<td>30-Sep-03</td>
<td>Completed</td>
<td>ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>42</td>
<td>Implement procedures for suspension of RVSM</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>ATC/WG, RVSM Task Force</td>
</tr>
<tr>
<td>43</td>
<td>Liaise with State defense authorities regarding military operations</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>44</td>
<td>Pilot & ATC Training</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>IATA, RVSM Task Force</td>
</tr>
<tr>
<td>45</td>
<td>Conduct local RVSM training for air traffic controllers</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>States, ATC/WG</td>
</tr>
<tr>
<td>46</td>
<td>Perform System Verification</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>APARMO, MAAR and SAM/WG, RVSM Task Force</td>
</tr>
<tr>
<td>47</td>
<td>Height keeping performance monitoring needed to undertake initial safety analysis</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>APARMO, MAAR and SAM/WG, RVSM Task Force</td>
</tr>
<tr>
<td>48</td>
<td>Provide representative traffic movement data to APARMO / MAAR</td>
<td>18-Jan-02</td>
<td>Ongoing</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>49</td>
<td>Undertake initial safety analysis</td>
<td>18-Jan-02</td>
<td>31-Mar-03</td>
<td>Completed</td>
<td>SAM/WG, RVSM Task Force</td>
</tr>
<tr>
<td>50</td>
<td>Prepare/maintain regional status report detailing RVSM implementation plans</td>
<td>18-Jan-02</td>
<td>Ongoing</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>51</td>
<td>Final Implementation Decision</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>52</td>
<td>Review aircraft altitude-keeping performance and operational errors</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>SAM/WG, OPS/AIR/WG</td>
</tr>
<tr>
<td>53</td>
<td>Complete ATS State documentation</td>
<td>18-Jan-02</td>
<td>7-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>54</td>
<td>Publish Trigger NOTAM</td>
<td>18-Jan-02</td>
<td>17-Nov-03</td>
<td>Completed</td>
<td>States</td>
</tr>
<tr>
<td>55</td>
<td>Complete readiness assessment</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>APARMO, MAAR and SAM/WG, RVSM Task Force</td>
</tr>
<tr>
<td>56</td>
<td>Complete safety analysis</td>
<td>18-Jan-02</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>APARMO, MAAR and SAM/WG, RVSM Task Force</td>
</tr>
<tr>
<td>57</td>
<td>Declare Initial Operational Capability</td>
<td>18-Jan-02</td>
<td>27-Nov-03</td>
<td>Completed</td>
<td>APARMO, MAAR and SAM/WG, RVSM Task Force</td>
</tr>
<tr>
<td>58</td>
<td>Monitor System Performance</td>
<td>18-Jan-02</td>
<td>27-Nov-04</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Perform Follow-On Monitoring</td>
<td>18-Jan-02</td>
<td>Ongoing</td>
<td>Completed</td>
<td>APARMO, MAAR, OPS/AIR/WG, SAM/WG</td>
</tr>
<tr>
<td>60</td>
<td>Adopt the global use of Minimum Monitoring Requirements (MMR)</td>
<td>12-Mar-04</td>
<td>Ongoing</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>61</td>
<td>Complete transition of monitoring functions from FAA to AEROTHAI</td>
<td>30-May-02</td>
<td>2-Sep-03</td>
<td>Completed</td>
<td>SAM/WG, MAAR</td>
</tr>
<tr>
<td>62</td>
<td>Declare Full Operational Capability</td>
<td>18-Jan-02</td>
<td>27-Nov-04</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>63</td>
<td>Task Force/15 (Bangkok)</td>
<td>3-Jun-02</td>
<td>7-Jun-02</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>64</td>
<td>1st Joint Interface Meeting with Middle East RVSM Task Force (Abu Dhabi)</td>
<td>19-Oct-02</td>
<td>20-Oct-02</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>65</td>
<td>Seminar/5 (Bangkok) - 3 days</td>
<td>15-Jan-03</td>
<td>17-Jan-03</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
</tbody>
</table>
Task List

<table>
<thead>
<tr>
<th>SN</th>
<th>Activity</th>
<th>Start</th>
<th>Complete</th>
<th>Present Status</th>
<th>Group Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Task Force/17 (Bangkok) - Bay of Bengal and Beyond Focus - 5 days</td>
<td>20-Jan-03</td>
<td>24-Jan-03</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>68</td>
<td>Special ATS Coordination Meeting (Kuala Lumpur) - FLOS for Bay of Bengal and Beyond</td>
<td>11-Aug-03</td>
<td>13-Aug-03</td>
<td>Completed</td>
<td>ATC/WG</td>
</tr>
<tr>
<td>69</td>
<td>2nd Joint Interface Meeting with Middle East RVSM Task Force (Abu Dhabi) - 3 days</td>
<td>27-Aug-03</td>
<td>28-Aug-03</td>
<td>Completed</td>
<td>ATC/WG</td>
</tr>
<tr>
<td>70</td>
<td>Special ATS Coordination Meeting (Bangkok) - Transition for Bay of Bengal and Beyond</td>
<td>3-Sep-03</td>
<td>5-Sep-03</td>
<td>Completed</td>
<td>ATC/WG</td>
</tr>
<tr>
<td>71</td>
<td>Task Force/20 (New Delhi) - Go/No-Go for Bay of Bengal and Beyond implementation - 5 days</td>
<td>27-Oct-03</td>
<td>31-Oct-03</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>72</td>
<td>Review of Air Traffic Management using RVSM in Bay of Bengal and Beyond (Bangkok) - 3 days</td>
<td>7-Jan-04</td>
<td>9-Jan-04</td>
<td>Completed</td>
<td>RVSM Task Force Chairman, ATC/WG, IATA, India and Pakistan</td>
</tr>
<tr>
<td>73</td>
<td>Task Force/21 (Bangkok) - 90 day follow up review on Bay of Bengal and Beyond implementation - 5 days</td>
<td>8-Mar-04</td>
<td>12-Mar-04</td>
<td>Completed</td>
<td>RVSM Task Force</td>
</tr>
<tr>
<td>74</td>
<td>Task Force/24 (Bangkok) - 1 year follow up Bay of Bengal and Beyond implementation - 5 days</td>
<td>8-Nov-04</td>
<td>12-Nov-04</td>
<td>Completed</td>
<td></td>
</tr>
</tbody>
</table>
Asia to Europe Traffic Planning
Using DOTS+ Online Track Advisory

Kevin T. Chamness
Program Manager, Oceanic Service Improvements
November, 2004
Route Congestion on Afghan Overflights

- Due to congestion and altitude restrictions on the westbound traffic flow from Asia to Europe, IATA is considering a centralised service for track advisory over Afghanistan.

- The service would be required to coordinate three independent traffic flows, likely over existing airways such as N644, L750 and V390.

- Affected flights involve a multiple air carriers. These flights primarily depart Delhi, Bangkok, Singapore, Kuala Lumpur and Mumbai.
Traffic Flow via V390, L750 and N644
DOTS+ Track Advisory is a Possible Solution

- DOTS+ can designate metered gateway fixes for traffic flow on N644, L750, V390 and others.

- Aircraft operators submit gateway requests for flights including track, altitude and an ETA at the gateway fix for each flight.

- DOTS creates gateway reservation lists including constraints like flow and altitude restrictions for each track.
DOTS+ Track Advisory is a Possible Solution

- Gateway reservation lists can be dynamically adjusted to account for changes in aircraft departure times and requests.

- Online Track Advisory (OTA) for the Asia to Europe flow would be a self-policing service.

- Aircraft operators assume responsibility for meeting assigned gateway times at designated fixes and altitudes.
DOTS +
Overview
Dynamic Ocean Track System Plus
DOTS Plus Capabilities

Current capabilities of the DOTS Plus system include:

- Optimized Flexible Track Systems
- Oceanic Traffic Situation Display
- Integrated Track Advisory Function
- External Messages
- Track Definition Messages
Flexible Track Optimization
Track Advisory
DOTS Plus Implementation
Gateway Configuration Example

N644 Gateway DI

L750 Gateway ZB

V390 Gateway GASIR
Gateway Configuration Example

- Gateway fixes are configurable (e.g. V390 gateway changes from GASIR to KN)

- Tracks can be restricted by altitude (e.g. L750 only available at FL310, FL330)

- Flow rates can be optimized per altitude (e.g. L750 flow at FL310 and FL330 is 15 min in trail, for an average of 8 flights per hour)

- Each track can be assigned a prioritization based on departure airport. (e.g. DEL/BOM flights have priority on V390. SIN/KUL flights may be assigned V390, space permitting)
Proposed DOTS+ Online Track Advisory Web-based Interface

- Web accessible and password protected.
- The DOTS+ Track Advisory secure web server would be available from any location with internet access.
- User accessible web interface is in lieu of the AFTN/NADIN II exchange used for Oakland track advisory.
- A web interface is a more flexible and user friendly approach to Track Advisory.
Step 1: Logon, Status and Messages

Secure Login

Text Messaging with Operator

Current Track Advisory Status
Step 2: Daily Updated Track View
Step 3: Create Templates for Recurring Flights

Name and save your flight templates

Store Info for Routine Flights
Step 4: Update Track Requests and Send Flight/Track Requests to DOTS+

Stored Data is Imported from your Templates

Modify track requests and send to DOTS+
Step 5: View DOTS Generated Gateway Reservation List

Icon indicates when requested Gateway time is not available

View Gateway Times for Each Track
Step 6: Change and Re-submit Requests if Necessary

Re-Edit flight if necessary

Find an available Gateway Slot

Re-submit updated request to DOTS
Paper Bay of Bengal Exercise

- The FAA and IATA ran a Track Advisory simulation for the Bay of Bengal in May, 2004.
- Nine air carriers participated by submitting Gateway Reservation Requests for a specified date.
- 39 Bay of Bengal flights were included in the simulation.
- DOTS+ generated Gateway Reservation Lists for N644, A466, L750, V390 and G462.
- To account for incomplete participation in the exercise, FL280 was reserved to simulate flight departing airports in Pakistan and India.
Paper Exercise Results with 15 Minute Flow Rate

- NUMBER OF FLIGHTS PUT INTO PROGRAM: 39
- NUMBER OF FLTS SCHEDULED ON-TIME: 23
- NUMBER OF FLTS SCHEDULED WITH DELAY: 14
- MINIMUM DELAY: 1
- MAXIMUM DELAY: 14
- AVERAGE DELAY TIME FOR DELAYED FLTS: 7.5

Two flts were not placed due to maximum submitted delay times exceeded.

- Of the 37 flights placed, 36 were placed over their primary requested gateway and 31 were slotted at their primary requested altitude.
Paper Exercise Results with 10 Minute Flow Rate

- NUMBER OF FLIGHTS PUT INTO PROGRAM: 39
- NUMBER OF FLTS SCHEDULED ON-TIME: 29
- NUMBER OF FLTS SCHEDULED WITH DELAY: 10
- MINIMUM DELAY: 1
- MAXIMUM DELAY: 9
- AVERAGE DELAY TIME FOR DELAYED FLTS 6.6

All flights were placed

- Of the 39 flights placed, 39 were placed over their primary requested gateway and 35 were slotted at their primary requested altitude.
FAA Proposed Business Arrangement

• The OTA service can be added under the FAA’s existing contract for DOTS+ software development and maintenance.

• If the region chooses the service, the software development, hardware and other setup expenses would be transferred to the sponsor via a one-time cost reimbursement with FAA.

• Any ongoing Tech support service costs would be transferred to the sponsor via a continuing cost reimbursement agreement.
Cost Estimate for Online Track Advisory System

One-Time Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Development</td>
<td>$100,000</td>
</tr>
<tr>
<td>Would include development of the web interface, the online database manager, and the web server to DOTS+ interface.</td>
<td></td>
</tr>
<tr>
<td>Hardware (Dedicated for Asia to Europe flow)</td>
<td>$90,000</td>
</tr>
<tr>
<td>Would include web server, operating system licenses, firewalls, dedicated DOTS+ serves and related peripherals, including setup and configuration testing. This would be a non-redundant configuration. (Overseas shipping cost of hardware is not included in this estimate)</td>
<td></td>
</tr>
</tbody>
</table>

Additional Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overseas site set-up cost</td>
<td>TBD</td>
</tr>
<tr>
<td>One-time cost for time, materials, travel and expenses for the on-site set-up, configuration and testing of the OTA system.</td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td>TBD</td>
</tr>
<tr>
<td>One-time cost for time, materials, travel and expenses required to train the local OTA operator.</td>
<td></td>
</tr>
<tr>
<td>Tech Support Service</td>
<td>TBD</td>
</tr>
<tr>
<td>Recurring cost for locally established OTA Tech Support and remote support as required.</td>
<td></td>
</tr>
</tbody>
</table>

All costs are in US Dollars

Would include an FAA administrative cost of approx 8%
Back-up Information
Current Configuration

- The DOTS Plus system consists of four primary components:
 - DOTS Plus Servers
 - Workstations
 - Token Ring LANs
 - Weather Servers

- DOTS Plus operates in a UNIX environment under the IBM Advanced Interactive Executive (AIX) operating system version 4.3.2
Workstation Configuration
Appendix H to the RVSM/TF/24 Report
Track Advisory Paper Exercise Report

Report on the Paper Exercise for Track Advisory in the Bay of Bengal

Background

Due to traffic congestion and delays on routes between points in Asia and Europe traversing the Bay of Bengal and Afghanistan, IATA and the Federal Aviation Administration have been exploring track advisory options in the region. The FAA's Dynamic Oceanic Tracking System (DOTS+) provides a metering function known as Track Advisory. This function, currently in operational use in the Pacific, may be useful in alleviating traffic congestion through the Bay of Bengal and Afghanistan by providing metered gateway reservations at strategic points in the affected airspace.

Paper Exercise Overview

The FAA and CSSI inc, with the support of IATA, conducted a paper simulation for track advisory in the Bay of Bengal. The simulation was conducted for a single day using data supplied by participating air carriers for gateway fixes on congested routes specified by IATA. The simulation asked participating air carriers to complete gateway reservation requests on a pre-determined day for each westbound flight planning to fly on tracks N644, A466, L750, V390 or G462.

Air carriers participating in the Track Advisory paper exercise were asked to submit at least one proposed ETA and planned altitude for each flight at the gateway fix for their chosen airway. A gateway fix is a pre-determined waypoint or navaid along the aircraft's planned route of flight, where DOTS+ can provide metering services in an advisory capacity.

The following gateway fixes were used for the exercise:

- N644 and A466, gateway fix - DI
- L750, gateway fix - ZB
- V390, gateway fix - KN
- G462, gateway fix – ZDN

In addition to the ETA and altitude for the gateway fix, each flight submitted a maximum delay that the flight was willing to accept in order to be slotted as close as possible to the requested gateway time. Optimally, the air carriers were asked to submit two or three options for track, gateway ETA, altitude and delay for each flight listed in priority of preference.

Nine air carriers submitted gateway request forms for 36 flights. Data was inserted for an additional air carrier with four flights based on historic flight data, for a total of ten air carriers and 40 flights. One flight was rejected due to missing data.

Several flights had submitted gateway requests for RVSM altitudes not permitted in the simulation (e.g. FL320). At the specification of IATA, the exercise required flights to plan at FL280, FL310, FL350 or FL390, with the exception that FL280 was not available for flight planning over the KN gateway (V390). For the purposes of the simulation, RVSM altitude requests were rounded to the nearest standard altitude.
The addition of RVSM altitudes, if made available, would likely reduce the overall delays calculated in the simulation, however this option was not available in the exercise.

To account for minimal participation by air carriers departing India and Pakistan, use of FL280 was considered primarily restricted for these flights.

Once compiled, the gateway request forms were used by the DOTS+ Track Advisory system to generate simulated Gateway Reservation Lists based on a 10-minute flow rate, and a 15-minute flow rate.

Simulation Results

DOTS+ successfully generated Gateway Reservation Lists for a 15-minute flow rate, and a 10-minute flow rate.

- Using a 15-minute flow rate, DOTS+ reported the following:

 NUMBER OF FLIGHTS PUT INTO PROGRAM: 39
 NUMBER OF FLIGHTS SCHEDULED ON-TIME: 23
 NUMBER OF FLIGHTS SCHEDULED WITH DELAY: 14
 MINIMUM DELAY: 1
 MAXIMUM DELAY: 14
 AVERAGE DELAY TIME FOR DELAYED FLIGHTS: 7.5

 Two flights were not placed due to maximum submitted delay times exceeded.

 DOTS+ scheduled on time releases for 62% of submitted flights. The distribution of delayed flights is as follows:

 - Delays 1 to 5 minutes: 4 flights
 - Delays 6 to 10 minutes: 7 flights
 - Delays > 10 minutes: 3 flight

 Of the 37 flights placed, 36 were placed over their primary requested gateway and 31 were slotted at their primary requested altitude.

- Using a 10-minute flow rate, DOTS+ reported the following:

 NUMBER OF FLIGHTS PUT INTO PROGRAM: 39
 NUMBER OF FLIGHTS SCHEDULED ON-TIME: 29
 NUMBER OF FLIGHTS SCHEDULED WITH DELAY: 10
 MINIMUM DELAY: 1
 MAXIMUM DELAY: 9
 AVERAGE DELAY TIME FOR DELAYED FLIGHT: 6.6

 All flights were placed.

1 In a non-simulated environment, flights not placed would be asked to re-submit gateway requests during a scheduled Track Advisory Negotiation Phase. The Negotiation Phase was not simulated during the paper exercise.
DOTS+ scheduled on time releases for 74% of submitted flights. The distribution of delayed flights is as follows:

Delays 1 to 5 minutes: 2 flights
Delays 6 to 10 minutes: 8 flights
Delays > 10 minutes: 0 flights

Of the 39 flights placed, 39 were placed over their primary requested gateway and 35 were slotted at their primary requested altitude.

Analysis and Conclusion

Due to incomplete participation, particularly from flights departing India and Pakistan, the paper exercise cannot be considered a full-fidelity simulation. However, the contingency of reserving FL280 for these flights was achieved with minimal impact on participating flights. In the derived Gateway Reservation Lists, FL280 remained available 100% of the time between 2000 and 2400UTC over all gateways except DI and KN. Over the DI gateway, FL280 remained available 75% of the time between 2000 and 2400UTC using a 15-minute flow and 83% of the time using a 10-minute flow. FL280 remained available over all gateways except KN (V390) at all times outside of the primary 2000-2400UTC window.

Based on available input for the Bay of Bengal Paper Track Advisory exercise, the DOTS+ system was successful in optimizing traffic sequences at the specified gateways. This optimization was achieved with the vast majority of aircraft released at their primary requested gateway and altitude. The mean delay times for both flow rates represent a significant improvement over ground delays commonly reported by IATA for aircraft in the analyzed traffic pattern.
AIRSERVICES AUSTRALIA PRESENTATION
Presentation on ATFM in Australia
To RVSM TF/24 meeting 11 Nov 2004

Ron Rigney
Airservices Australia
ATFM systems used by Australia

PAST: “Directed Flow”

PRESENT: CTMS/Skyflow
 MAESTRO

AND: Discussion on CTMS/Skyflow and early development work for BoB
Directed Flow at Australian Airports

- Manual calculation of arrival sequence and landing time
- “Flow Controller” determines acceptance rate (WX conditions and Runway capacity) – e.g. 2 minute sequence
- Directs flow through Enroute & TMA Controller:
 - Speed control (cruise and descent)
 - Distance specified – e.g. two jets 15NM in trail x 35 NM
 - Holding with specified Set Course time
 - “Set course time” specified for aircraft departing from smaller airports and in close proximity to major airport
- Instrument training flights included in sequencing “Slot Time”
Prior to introduction of TAAATS and multi-radar tracking, “Directed Flow” was applied only at or inside 160NM (i.e. within pre-existing radar coverage)

Did not permit early application of speed control/sequencing and so did not allow for efficient application of speed in the total cruise phase of flight

Controller workload & inefficient Traffic Management
CTMS = Central Traffic Flow Management System
Software used to support CTMS is called SKYFLOW
CTMS/Skyflow is primarily used to match demand with capacity in Sydney – other Ports use it to look at schedule peaks and troughs – strategic planning tool
CTMS/Skyflow implemented at Sydney Airport in the late 90’s – ahead of the 2000 Olympic Games (peak of 1000 movements per day with curfew in place)
Operates under agreement with the stakeholders under co-signed Business rules
Generates a range of reports and traffic details for analysis
The daily program includes the following key data:

- Runway selection, TAF, type of approach, terminal use, aircraft type, port of departure, scheduled time

Schedules imported/loaded

Flights programmed to meet target times – which can be either:

- Runways;
- Airport gates; or
- Airborne gates

CTMS program issues ground delay as required

The result is an optimised arrival time for the input capacity for each 30 minute period
CTMS programming process

- The CTMS program outcome is sent to the Airlines
- Flight planning submitted based on final programmed time
- Flights depart on Programmed time
- Tactical Control still required for final management
- Interaction is via interface, web site, fax or telephone (e-mail under development)
The Eurocat-Maestro system is a proven design and has been successfully operated in Sydney since May 2000.

Maestro has been expanded to include Melbourne and Brisbane ACCs - to optimize traffic handling rates and reduce costs to Industry caused by delays.

Instead of Enroute controllers responding to specific flow directions, controllers are responsible for managing and planning their traffic to ensure that aircraft meet specified Feeder Fix times.

Flow controller can amend acceptance rate depending on conditions.

Contingency is to revert to manually directed Flow.
CTMS/Skyflow is a unique Traffic Management System that was developed by Airservices Australia for “Slot Management” at Sydney Airport and later at other major airports.

The software is purpose-built and not an “off-the-shelf” product that can be readily upgraded or modified – without significant expense and resources.
Airservices Australia has completed a recent review of its plans to offer CTMS/Skyflow as an ATFM tool for the Bay of Bengal and has decided, for a number of reasons, including:

- Lack of “robustness” in its current configuration
- Unfavourable “Business Case” forecast
- Concerns over “Fit for purpose” as an Enroute ATFM tool.....

To remove CTMS/Skyflow from further consideration as an alternative ATFM system tool for deployment in the Bay of Bengal region
The decision to remove CTMS/Skyflow as an alternative ATFM system for the BoB was taken after full consideration of all the issues facing Airservices Australia.

As exemplified through EMARSSH, RVSM and RNP implementation, **Airservices Australia is a willing partner and remains committed** to working with ICAO, States and Organisations in the development of an ATFM system for the Bay of Bengal.

QUESTIONS?