GBAS/SBAS IMPLEMENTATION in APAC
AUSTRALIA’S PERSPECTIVE

Jorge Woods - CASA
PERSPECTIVES

- OVERALL
- GBAS
- SBAS
- RELATED NAV/SUR
OVERALL (1)

- Aviation is self funding in Australia

- Government Policy Task
 - Influence infrastructure investment and operating costs at the service of society
 - Whole of Government Approach

- Australia
 - Departments/Agencies under State Safety Program
 - Industry
OVERALL (2)

➢ Australia ‘thinks’

- Global ATM Concept (GATMOC, Doc 9854)
- Balancing GATMOC’s
 - Performance Service Asset Package (PSAP) (Cir335)
 - across its 11 KPA (Doc 9883)
 - using the GANP
OVERALL (3)

- GBAS/SBAS =
 - part of Navigation Equation, which is
 - part of ATM/CNS, which is
 - part of Aviation Transport System, which is
 - part of Transport System
GBAS

- **2006-2011** = SYD GBAS trials
- **2012(06)** = SYD GBAS – restricted operators
- **2014(06)** = SYD GBAS – all operators
 - RWY: 07, 16L, 16R, 25, 34L, 34R
- **2017(06)** = MEL GBAS – all operators
 - RWY 09, 16, 27, 34
- **FUTURE** = Potentially BN, PH and AD
2019(Q3): Cost benefit analysis across 10 industry sectors (including aviation)

- Benefits expected = several billions AUD

Test bed indicates performance compatible with cost benefits analysis

Important to know the user base

- SBAS = potential APV to 1000 RWY Ends
RELATED NAV/SUR (1) – Context

- GNSS/ADS-B mandate IFR (2013 => 2017)
- Navigation Rationalization Project (NRP) (2016)
- PBN
- TIFP
- Surveillance
- ADS-B Data Sharing
RELATED NAV/SUR (1) – Context

- GNSS/ADS-B mandate IFR (2013 => 2017)
 - Most IFR flights GNSS as primary
 - Extend surveillance coverage substantially
 - Progressive Steps: 2013; 2014 (2); 2016; 2017
 - GNSS/ADS-B Mandate ≠ SBAS equipped
2016 – Decommissioned ~50% ground-based navaids

Backup Navaid Network (BNN):

- Allow recovery of “flight in progress” if unable to access GNSS (e.g. localized jamming; aircraft fault)
- Support aircraft without fault detection and exclusion (all SBAS receivers have FDE)
- Provide limited ongoing network capacity in the case of a sustained failure (balance between flexibility and resilience)
BNN Limitations

- Cost of IFR training that is not used
 - E.g. recency on NDB/VOR approaches
- Proximity of alternate airports for aircraft without FDE
- Network architecture needs review
RELATED NAV/SUR (4) – PBN (1)

Navigation specifications

RNP specifications
(includes a requirement for on-board performance monitoring and alerting)

- Oceanic and remote specifications:
 - RNP 4
 - RNP 2

- En route and terminal specifications:
 - RNP 2
 - RNP 1
 - A-RNP
 - RNP APCH
 - RNP AR APCH
 - RNP 0.3

RNAV specifications
(no requirement for on-board performance monitoring and alerting)

- En route and terminal specifications:
 - RNAV 5
 - RNAV 2
 - RNAV 1

- Oceanic and remote specifications:
 - RNAV 10 (RNP 10)
Navigation Specifications used in Australia

<table>
<thead>
<tr>
<th>Specification</th>
<th>Intended Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNAV 10 (RNP 10) Oceanic Operations Supported in Australia</td>
<td>• Supports 50 NM lateral and longitudinal separations in oceanic / remote continental airspace.</td>
</tr>
<tr>
<td>RNP 4 Oceanic Operations Preferred in Australia</td>
<td>• Supports 30 NM lateral and longitudinal separations in oceanic / remote continental airspace.</td>
</tr>
<tr>
<td>RNP 2 Enroute Operations</td>
<td>• Oceanic and enroute use.</td>
</tr>
<tr>
<td>RNP 1 Terminal Operations</td>
<td>• Provides connectivity between enroute airspace and Instrument Approach Procedures in terminal airspace (SIDs and STARs).</td>
</tr>
<tr>
<td>RNP APCH Approach Operations Charted “RNAV GNSS”</td>
<td>• Provides RNAV GNSS approach operations:</td>
</tr>
<tr>
<td></td>
<td>• NPA = LNAV (MDA/H) and APV = LNAV/VNAV (DA/H)</td>
</tr>
<tr>
<td>RNP AR APCH Approach Operations Charted “RNAV RNP”</td>
<td>• Authorisation Required (AR) for such operation.</td>
</tr>
<tr>
<td></td>
<td>• Supports RNP 0.3—0.1 and curved paths.</td>
</tr>
</tbody>
</table>
Related NAV/SUR (6) – TIFP

- Total ≈ 300 aerodromes (certified or registered)

- TIFP figures (now/planned)
 - Baro-VNAV ≈ 105/337
 - RNP-AR ≈ 40/44
 - GLS ≈ 10/18
 - SBAS Potentially
 - to all ≈ 1100 Runway Ends
 - depending on benefits for each individual case
RELATED NAV/SUR (7)

- SUR Coverage 10000 ft
RELATED NAV/SUR (8)

➢ ADS-B Data Sharing – Australia/Indonesia
WE ‘THINK’

- balance ICAO Performance Service Asset Package (PSAP)
- for 11 KPA in ICAO GATMOC
- across known user base
- with stakeholders moving in synchronism
- using the GANP
- Ref: Docs 9854, 9883, Circ. 335
WRAP UP (2)

- GBAS: proved net benefits in specific cases
- SBAS: viable for user-base > than aviation
- RELATED NAV/SUR: GBAS/SBAS within context
 - navigation rationalisation and backup
 - PBN, TIFP
 - surveillance needs
SPARE SLIDES
GNSS/ADS-B Mandate – Schedule (1)

AIRCRAFT EQUIPMENT

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Applicable to</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 December 2013</td>
<td>Aircraft operating at or above FL 290</td>
</tr>
</tbody>
</table>
| 1 January 2014 | New aircraft registered on or after 1 January 2014
 • MCTOW >5700 kg or >19 passengers |
| 6 February 2014 | New aircraft registered in Australia on or after 6 February 2014 |
| | Existing aircraft modified on or after 6 February 2014 and: |
| | Operating in class A, B, C, or E airspace, or Operating above 10,000ft in class G airspace. |
| | Note: Not applicable to aircraft operating in class E airspace or above |
| | 10,000ft in class G airspace if the aircraft has no engine or insufficient |
| | electrical power capacity to operate a transponder. |
| | New aircraft operating in RPT or charter operations |
| | New aircraft operating in aerial work or private operations |
| | Existing aircraft operating in RPT or charter operations, |
| | if modified on or after 6 February 2014 |
| | Existing aircraft operating in aerial work or private operations |
| | if modified on or after 6 February 2014 |
GNSS/ADS-B Mandate Schedule (2)

<table>
<thead>
<tr>
<th>Date</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 February 2016</td>
<td>Aircraft operating in class A, B, C or E airspace in the 500nm quadrant north and east of Perth</td>
</tr>
<tr>
<td></td>
<td>Aircraft operating at Brisbane, Sydney, Melbourne, or Perth aerodromes</td>
</tr>
<tr>
<td>2 February 2017</td>
<td>Existing aircraft operating in RPT or charter operations</td>
</tr>
<tr>
<td></td>
<td>Existing aircraft operating in aerial work or private operations</td>
</tr>
<tr>
<td></td>
<td>Existing aircraft on the Australian register before 6 February 2014</td>
</tr>
</tbody>
</table>

Notes

1. Requirements are applicable to aircraft conducting IFR operations only.
2. Refer to CAO 20.18 and 20.91 for full details of requirements.