

MSAS System Development

Susumu Saito Electronic Navigation Research Institute National Institute of Maritime, Port and Aviation Technology, Japan (E-mail: susaito@mpat.go.jp)

- MSAS development
 - MSAS history
 - MSAS configuration
 - Ionosphere threat mitigation
- MSAS upgrade
 - MTSAT to Michibiki (QZSS)
 - Further upgrade plan

- Japan Civil Aviation Bureau (JCAB) decided implementation of its own SBAS in 1993, aiming at commissioning in 2000.
 - Named as MSAS (MTSAT (Multi-functional Satellite) Satellitebased Augmentation System)
- Ground facility (MSAS-96 System)
 - Completed in 1996.
- * GEOs
 - MTSAT-1 failed in 1999.
 - MTSAT-IR launched in 2005, MTSAT-2 in 2006.
- * Operation
 - Test signal broadcast from summer 2005
 - Certification activities for 2 years
 - Operation started from September 2007

ENRI MSAS original configuration - overview

- Augments GPS LI signals
 Two GEOs
 - MTSAT-IR (PRNI29)*
 - MTSAT-2 (PRNI37)
- * Ground Facility
 - 2 Master Control Stations (MCSs)
 - 6 Ground Monitoring Stations (GMSs) (Two of them are with the MCSs)
 - 2 Monitoring and Ranging Stations (MRSs)**

*MTSAT-IR has been decommissioned in December 2015 **MRSs have been decommissioned.

MSAS original configuration - GEO

- 3-axis stabilized spacecraft
- Together with instruments for weather monitoring missions
- * L-band transponder with 2.2 MHz bandwidth
 - Uplink in Ku-band (13 GHz)

MSAS original configuration - MCS

KASC (Kobe Aeronautical Satellite Center)

- Nominally for MTSAT-IR
 - Backup for MTSAT-2
- 3 dish antennas (2 for GEOs and one for emergency)

HASC (Hitachi-Ota Aeronautical Satellite Center)

- Nominally for MTSAT-2
 - Backup for MTSAT-IR
- 3 dish antennas (2 for GEOs and one for emergency)

Current MSAS operations

 Horizontal guidance only due to ionospheric activities

ENR

MSAS Coverage

Ionospheric Conditions in Japan

- Japan is located at mid- to low magnetic latitude region (~15-41° in magnetic latitude).
 - Subject to both mid-latitude type and low latitude type ionospheric anomalies

GBAS/SBAS International Workshop, Seoul, 3-5 June 2019

8nn

- Threat space is wider for MSAS than WAAS. *
 - Severer ionospheric conditions
 - Limited distribution of GMSs

Fit Radius [km]

Currently only horizontal guidance can be provided.

Fit Radius [km]

1200

2000

Performance of MSAS - Accuracy

GBAS/SBAS International Workshop, Seoul, 3-5 June 2019

SBAS Equipage

* The number of SBAS equipped aircraft is increasing.

RNAV/RNP Implementation

Hachijhoshima

37

RNAV I:

Saga

Yakushima

Tanegashima

Tokushima

Amakusa

ENR

* MSASV2 (2020-)

- System update with QZSS (Michibiki)
- RNAV (en-route to RNP-0.3) in Fukuoka FIR (Same as current MSAS)
- * MSASV3 (2023(TBD)-)
 - Additional GEOs and GMSs
 - LPV implementation
- MSASV4
 - DFMC (Dual-Frequency and Multi-Constellation) SBAS
 - Validation activities by ENRI (2017-)