WAFSOPSG/6-IP/16 14/3/11

WORLD AREA FORECAST SYSTEM OPERATIONS GROUP (WAFSOPSG)

SIXTH MEETING

Dakar, Senegal, 21 to 24 March 2011

Agenda Item 5: Operation of the WAFS

5.3: Other issues related to the operation and implementation of the WAFS

COMPARISON OF UPPER AIR DATA ISSUED BY WAFC LONDON AND WAFC WASHINGTON

(Presented by the International Air Transport Association)

SUMMARY

This paper provides a brief summary of an analysis on the application of Upper Air Data provided in flight planning. by WAFC London and WAFC Washington. The results of flight plans calculated with UAD from EGRR and KWBC are compared.

Detailed results are provided in the appendix to this information paper.

1. **INTRODUCTION**

1.1 World area forecast centre (WAFC) London and WAFC Washington are designated centres for the issuance of global upper air forecasts for aviation purposes. Airlines and flight plan service providers are using this UAD for flight optimization and fuel calculations.

1.2 Each end user has decided which UAD are applied in their systems.

2. **DISCUSSION**

2.1 This information paper provides the results of a comparison analysis undertaken in December 2010 and February 2011 in order to identify possible significant differences between UAD provided by WAFC London and WAFC Washington in GRIB1 code form.

2.2 Detailed results of the case study are provided in the appendix to this information paper.

2.3 The study showed a tendency for more fuel uplift when using UAD issued by WAFC Washington, but there are variations from city pair to city pair. Summarizing all fuel differences over all calculated flights from the February analysis indicates an average additional fuel of about 90 kg per 1000 nm.

2.4 The analysis performed by Lufthansa Systems on behalf of the International Air Transport Association (IATA) has shown that for 50 international flights considered at random, fuel uplift calculations were between 3 and 5 tonnes (circa 4000 USD) higher using WAFC Washington wind and temperature data over WAFC London data. Some examples show that for flights with tail wind and in higher wind speed conditions the wind speed forecast in KWBC UAD is lower than in EGRR UAD.

2.5 The analysis does not give an indication for a preference of UAD. Both UAD fulfil the actual requirements for accuracy.

3. **ACTION BY THE WAFSOPSG**

3.1 The WAFSOPSG is invited to note the information presented in this paper.

WAFC Upper Air Data

WAFSOPSG/6-IP/16 Appendix A

APPENDIX A

Case Study on Differences in UAD issued by WAFC London and WAFC Washington

December 2010 / February 2011

Table of Contents Introduction 4

1

- 2 Study conditions 5 3 Study results 10 4 Conclusion 11 5 Result details 12 City Pair: FRA – LAX – FRA 12 5.1 City Pair: FRA – EZE – FRA 18 5.2 5.3 City Pair: FRA – SHA – FRA 24 5.4 City Pair: FRA – JNB – FRA 28 City Pair: FRA - SIN - FRA 34 5.5 5.6 City Pair: SEA – MIA – SEA 38 City Pair: ANC - SJU - ANC 44 5.7 City Pair: DXB - ORD - DXB 50 5.8 5.9 City Pair: DXB – MEL – DXB 54 5.10 City Pair: DXB - PEK - DXB 60 5.11 City Pair: SYD - SCL - SYD 64 5.12 City Pair: AKL - HNL - AKL 68
- 5.13 City Pair: CPT CCS CPT 74
- 5.14 City Pair: GRU MEX GRU
- 79

Chapter 1 Introduction

With the reception of Upper Air data (UAD) issued by WAFC Washington a study was invoked in order to identify possible significant differences in Lido/Flight. The purpose of this study was to show the impact of UAD issued by WAFC Washington in comparison to the UAD issued by WAFC London on the results of flight plan calculations.

The study is a snap-shot for a particular observation time and it does not claim any transferability on other weather situations.

Chapter 2 Study conditions

Test cases December 2010:

For the study following 14 city pairs have been selected.

FRA - LAX - FRA FRA - EZE - FRA FRA - SHA - FRA FRA - SIN - FRA FRA - JNB - FRA SEA - MIA - SEA ANC - SJU - ANC DXB - ORD - DXB DXB - MEL - DXB DXB - PEK - DXB SYD - SCL - SYD AKL - HNL - AKL CPT - CCS - CPT GRU - MEX - GRU

All calculations were based on UAD observation time at **07DEC2010 0600UTC** issued by WAFC London (**EGRR**) and WAFC Washington (**KWBC**)

Minimum Fuel Track (**MFT**) and Minimum Time Track (**MTT**) optimization without restrictions have been selected for the flight plan calculations in order to exclude temporary impacts.

For all calculations UAD forecasts **T+06**, **T+12** and **T+24** are used. In case of some extreme long haul flights (flight time longer than 12 hours) also **T+30** UAD forecast was applied.

A linear time interpolation between the forecasts is applied.

Values for flight levels located between two hPa-levels have been interpolated under the consideration of the max-wind- and tropopause levels.

All flight plans have been calculated with identical flight conditions (aircraft registration, load, speed etc.).

The departure time is always 1200UTC. The arrival time depends on the calculated flight time including the taxi out time.

Aircraft type: B747-400

Payload. 42000 kg

The study is performed in four steps.

Step 1:

Calculate MFT and MTT of all flights of the above listed city pairs applying UAD issued by WAFC London

Table column: MFT and MTT

Step 2:

Calculate MFT and MTT of all flights of the above listed city pairs applying UAD issued by WAFC Washington

Table column: MFT and MTT

Step 3:

Use the MFT and MTT results (routing and flight profile) from Step 1 and recalculate the flight plan with UAD issued by WAFC Washington

Table column: MFT-K and MTT-K

Step 4

Use the MFT and MTT results (routing and flight profile) from Step 2 and recalculate the flight plan with UAD issued by WAFC London

Table column: **MFT-E** and **MTT-E**

The results are presented as graphics and in table form as differences between the output of calculations **KWBC UAD - EGRR UAD**.

Example:

Routing: FRA – LAX

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average							
wina-comp-			-	-		-	
Diff [KTS]	н	1	2	0	0	0	0
TKOF-Diff							
[KG}		88	132	88	43	46	93
Dist-Diff							
[NM}		-2	-14	0	0	0	0
Time-Diff							
[MIN]		-1	-2	0	0	1	1

Column:	
Avg Wind-Dir	$H \rightarrow$ Head wind, T \rightarrow Tail wind
MFT	Differences on Minimum Fuel Track calculation (KWBC - EGRR) Free optimization with EGRR and KWBC UAD, no restriction
МТТ	Differences on Minimum Time Track calculation (KWBC - EGRR) Free optimization with EGRR and KWBC UAD, no restriction
MFT-K	Differences on Minimum Fuel Track calculation (KWBC - EGRR) Optimized MFT routing based on EGRR UAD recalculated with KWBC UAD, flight path and profile not changed
МТТ-К	Differences on Minimum Time Track calculation (KWBC - EGRR) Optimized MTT routing based on EGRR UAD recalculated with KWBC UAD, flight path and profile not changed
MFT-E	Differences on Minimum Fuel Track calculation (KWBC - EGRR) Optimized MFT routing based on KWBC UAD recalculated with EGRR UAD, flight path and profile not changed
MTT-E	Differences on Minimum Time Track calculation (KWBC - EGRR) Optimized MTT routing based on KWBC UAD recalculated with EGRR UAD, flight path and profile not changed
Row:	
Average wind- comp-Diff [KTS]	Differences in average wind component over the entire flight (KWBC - EGRR) positive values = higher wind component with KWBC UAD negative values = higher wind component with EGRR UAD
TKOF-Diff [KG}	Differences in Take-off Fuel (KWBC - EGRR) positive values = higher take-off fuel with KWBC UAD negative values = higher take-off fuel with EGRR UAD
Dist-Diff [NM}	Differences in flight distance (KWBC - EGRR) positive values = shorter flight distance with KWBC UAD negative values = shorter flight distance with EGRR UAD
Time-Diff [MIN]	Differences in flight time (KWBC - EGRR) positive values = shorter flight time with KWBC UAD negative values = shorter flight time with EGRR UAD

Test cases February 2011:

In this 36 city pairs have been included.

All calculations were based on UAD forecasts issued by WAFC London (**EGRR**) and WAFC Washington (**KWBC**)

Minimum Fuel Track (**MFT**) optimization without restrictions have been selected for the flight plan calculations in order to exclude temporary impacts.

For all calculations UAD forecasts **T+06**, **T+12** and **T+24** are used. In case of some extreme long haul flights (flight time longer than 12 hours) also **T+30** UAD forecast was applied.

A linear time interpolation between the forecasts is applied.

Values for flight levels located between two hPa-levels have been interpolated under the consideration of the max-wind- and tropopause levels.

All flight plans have been calculated with identical flight conditions (aircraft registration, load, speed etc.).

The departure time is always 1200UTC. The arrival time depends on the calculated flight time including the taxi out time.

Aircraft type: A340-330/A380-800

Payload. Variable depending on possible max payload

The study is performed in four steps.

Step 1:

Calculate MFT for all selected city pairs applying UAD issued by WAFC London

Step 2:

Use the **MFT** result (routing and flight profile) from Step 1 and recalculate the flight plan with UAD issued by WAFC Washington

Chapter 3 Study results

All flight plan calculations were based on an actual aeronautical navigational database valid at the time of calculation.

The overall result does not show a significant difference between the two WAFC UAD. However a tendency could be found that UAD from EGRR are forecasting higher wind speeds. This results in a lower trip fuel amount. The summary of all differences in the December test phase shows that flights calculated with KWBC UAD requires about 2300kg more fuel for MFT and about 2500kg for MTT flight plans.

In the February test phase about 4800kg more fuel is calculated over all flights for a total flight distance of about 420000 nm. In other words is the difference about 90 kg per 1000 nm.

Chapter 4 Conclusion

The analysis performed by Lufthansa Systems has shown that for 50 international flights considered at random, fuel uplift calculations were between 3 and 5 tonnes (circa 4000 USD) higher using WAFC Washington wind and temperature data over WAFC London data.

Some examples show that for flights with tail wind and in higher wind speed conditions the wind speed forecast in KWBC UAD is lower than in EGRR UAD.

The analysis does not give an indication for a preference of UAD. Both UAD fulfill the actual requirements for accuracy.

A higher accuracy is expected with the introduction of GRIB2 In the flight plan calculations.

It is planned to perform a similar analysis with GRIB2 and also a comparison of flight plans calculated with GRIB1 and GRIB2.

A-12

Chapter 5 Result details

Test cases December 2010

City Pair: FRA – LAX – FRA

Routing: FRA – LAX

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp-							
Diff [KTS]	Н	1	2	0	0	0	0
TKOF-Diff							
[KG}		88	132	88	43	46	93
Dist-Diff							
[NM}		-2	-14	0	0	0	0
Time-Diff							
[MIN]		-1	-2	0	0	1	1

MFT routing based on KWBC UAD is 2nm shorter and differs only in some minor parts of the routing from the MFT of EGRR UAD. The required fuel is about 100kg higher.

MTT routing based on KWBC UAD is 14nm shorter and differs only in some minor parts of the routing from the MTT of EGRR UAD. The required fuel is about 100kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is nearly identical (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is nearly identical (MFT-E, MTT-E).

The average wind component is calculated as head wind (M004 and M007) with higher values for KWBC UAD. This is also reflected in the higher required fuel.

MFT Routing: FRA – LAX (Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

MTT Routing: FRA – LAX (Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

Routing: LAX – FRA

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-1	2	-3	-1	0	-2
TKOF-Diff							
[KG]		-301	-360	106	49	539	355
Dist-Diff							
[NM]		-24	2	0	0	0	0
Time-Diff							
[MIN]		0	2	0	0	3	2

MFT routing based on KWBC UAD is 24nm shorter and differs in more than 80% of the routing from the MFT of EGRR UAD. The required fuel is about 300kg lower.

MTT routing based on KWBC UAD is 2nm longer and differs in more than 80% of the routing from the MTT of EGRR UAD. The required fuel is about 350kg lower.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 100kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is more up to 550kg higher (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P039 and P042) with a higher value for MTT KWBC UAD. This is also reflected in the lower required fuel.

The lower wind component of MFT KWBC UAD is compensated by the shorter distance of the routing.

(Black - GRIB1 EGRR; Blue - GRIB1

MFT Routing: LAX – FRA KWBC)

A-17

Routing: FRA – EZE

City Pair: FRA – EZE – FRA

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average							
wind-comp-							
Diff [KTS]	Т	2	4	1	1	-2	-2
TKOF-Diff							
[KG}		-196	-429	-126	-119	236	198
Dist-Diff							
[NM}		3	49	0	0	0	0
Time-Diff							
[MIN]		-2	-2	-2	-2	3	2

MFT routing based on KWBC UAD is 3nm longer and differs only in a minor part of the routing from the MFT of EGRR UAD. The required fuel is about 200kg lower.

MTT routing based on KWBC UAD is 49nm longer and differs between the departure airport and the Acores Islands significantly from the MTT of EGRR UAD. The required fuel is about 400kg lower.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 100kg lower (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is more up to 200kg higher (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P003 and P012) with higher values KWBC UAD. This is also reflected in the lower required fuel.

The higher wind component of MTT KWBC UAD is compensated by the longer distance of the routing.

MFT Routing: FRA – EZE

(Black - GRIB1 EGRR; Blue - GRIB1

A-19

A A NIK OFP: 4 EDDF BADUR MMD -----YOX BEDRA 4715N 4520N 027N LPLA 8531 N 3033N 2535N 2037N 1339N 0542N RDS24 ŠLĨ ACENA PANDI UKOL RO IGAS SBPA **ALO** AF7

MTT Routing: FRA – EZE KWBC) (Black – GRIB1 EGRR; Blue – GRIB1

A-21

Routing: EZE – FRA

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-3	0	-1	0	0	0
TKOF-Diff [KG]		2	34	326	55	25	-39
Dist-Diff [NM]		-24	0	0	0	0	0
Time-Diff [MIN]		0	0	1	0	0	0

MFT routing based on KWBC UAD is 24nm shorter and differs completely from the MFT of EGRR UAD. The required fuel is identical.

MTT routing based on KWBC UAD is identical with the MTT of EGRR UAD. The required fuel is identical.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 300kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is nearly identical (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P032and P035) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

The lower wind component of MFT KWBC UAD is compensated by the shorter distance of the routing.

(Black – GRIB1 EGRR; Blue – GRIB1

MFT Routing: EZE – FRA

MTT Routing: EZE – FRA

A-23

City Pair: FRA – SHA – FRA

Routing: FRA – SHA

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-2	-2	-2	-2	2	2
TKOF-Diff [KG}		575	917	641	642	-596	-608
Dist-Diff [NM}		0	13	0	0	0	0
Time-Diff [MIN]		2	4	2	2	-2	-2

MFT routing based on KWBC UAD is identical with MFT of EGRR UAD. The required fuel is significant higher (575kg).

MTT routing based on KWBC UAD is 13nm longer, but does not differ significantly from the MTT of EGRR UAD. The required fuel is significant higher (917kg).

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is more 600kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is about 600kg lower (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P080 -- P082) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

(Black – GRIB1 EGRR; Blue – GRIB1

Routing: SHA – FRA

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp-		•	•				
Diff[KTS]	н	2	0	-1	-2	-1	1
TKOF-Diff							
[KG]		293	-381	343	-336	-216	412
Dist-Diff							
[NM]		6	1	0	0	0	0
Time-Diff							
[MIN]		1	-1	1	-1	0	2

MFT and MTT routings differ significantly.

MFT routing based on KWBC UAD is 6nm longer, but does not differ significantly from the MTT of EGRR UAD. The required fuel is about 300kg higher.

MTT routing based on KWBC UAD is 1nm longer, but does not differ significantly from the MTT of EGRR UAD. The required fuel is about 400kg lower.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is more 600kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is about 600kg lower (MFT-E, MTT-E).

The average wind component is calculated as head wind (M005 – M007 for MFT; M0045 – M047 for MTT) with higher values for MFT KWBC UAD. This is also reflected in the higher required fuel for MFT KWBC UAD.

MFT Routing: SHA – FRA (Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

MTT Routing: SHA – FRA KWBC)

(Black - GRIB1 EGRR; Blue - GRIB1

City Pair: FRA – JNB – FRA

Routing: FRA – JNB

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average							
wind-comp-							
Diff [KTS]	Т	1	1	1	1	-1	-1
TKOF-Diff							
[KG}		-149	366	-116	-143	229	313
Dist-Diff							
[NM}		0	0	0	0	0	0
Time-Diff							
[MIN]		-1	-1	0	0	1	1

Due to a lack of routing options MFT and MTT of both WAFC UAD are showing identical routings. In this case only the impact of the UAD forecast on the fuel calculation is shown.

MFT routing based on KWBC UAD is identical with MFT of EGRR UAD. The required fuel is about 150kg lower.

MTT routing based on KWBC UAD is identical with MTT of EGRR UAD. The required fuel is about 350kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is more 100kg lower (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is about up to 300kg lower (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P008 – P010) with higher values for KWBC UAD. This is also reflected in the lower required fuel MFT KWBC UAD, while MTT KWBC UAD requires more fuel.

MTT Routing: FRA – JNB (Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

Routing: JNB – FRA

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	н	-1	-1	-1	-1	0	0
TKOF-Diff							
[KG]		-347	-348	-311	-317	329	318
Dist-Diff			_	_	_	_	_
[NM]		0	0	0	0	0	0
Time-Diff [MIN]		-1	-1	-2	-2	1	1

Due to a lack of routing options MFT and MTT of both WAFC UAD are showing identical routings. In this case only the impact of the UAD forecast on the fuel calculation is shown.

MFT and MTT require about 350kg less fuel for a flight based on KWBC UAD.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is about 300kg lower (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is about 300kg higher (MFT-E, MTT-E).

The average wind component is calculated as head wind (M011 – M012) with lower values for KWBC UAD. This is also reflected in the lower required fuel.

A-32

MFT Routing: JNB – FRA (Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

City Pair: FRA – SIN – FRA

Routing: FRA – SIN

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-1	-1	0	-1	1	1
TKOF-Diff [KG}		71	61	99	90	-11	-13
Dist-Diff [NM}		0	0	0	0	0	0
Time-Diff [MIN]		1	1	1	1	0	0

Due to a lack of routing options MFT and MTT of both WAFC UAD are showing identical routings. In this case only the impact of the UAD forecast on the fuel calculation is shown.

The average wind component is calculated as tail wind (P022 – P023) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

MTT Routing: FRA – SIN

(Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

Routing: SIN – FRA

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	н	1	1	1	0	-1	0
TKOF-Diff [KG]		252	273	267	303	-246	-260
Dist-Diff [NM]		0	0	0	0	0	0
Time-Diff [MIN]		1	2	1	2	-1	-2

Due to a lack of routing options MFT and MTT of both WAFC UAD are showing identical routings. In this case only the impact of the UAD forecast on the fuel calculation is shown.

KWBC UAD causes a higher amount of fuel.

The average wind component is calculated as head wind (M014 – M015) with higher values for KWBC UAD. This is also reflected in the higher required fuel.

MTT Routing: SIN – FRA

(Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

A-37

City Pair: SEA – MIA – SEA

Routing: SEA – MIA

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-4	-3	-3	-3	2	2
TKOF-Diff [KG}		182	198	211	215	-156	-148
Dist-Diff [NM}		-7	-5	0	0	0	0
Time-Diff [MIN]		2	2	2	2	-1	-1

MFT routing based on KWBC UAD is 7nm shorter and differs in the central part of the routing from the MFT of EGRR UAD.. The required fuel is about 200kg lower.

MTT routing based on KWBC UAD is 5nm shorter and differs in the central part of the routing from the MFT of EGRR UAD.. The required fuel is about 200kg lower.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is about 200kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is about 150kg lower (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P069 – P073) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

MFT Routing: SEA – MIA

(Black - GRIB1 EGRR; Blue - GRIB1

Routing: MIA – SEA

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average						No	No
wind-comp-						result	result
Diff [KTS]	Н	1	0	1	0		
TKOF-Diff						No	No
[KG]		-12	0	2	20	result	result
Dist-Diff						No	No
[NM]		0	2	0	0	result	result
Time-Diff						No	No
[MIN]		0	0	0	0	result	result

No differences found for this flight.

The average wind component is calculated as head wind (M044 – M046) with higher values for KWBC UAD.

(Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

A-43

City Pair: ANC – SJU – ANC

Routing: ANC – SJU

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-2	-2	0	0	1	1
TKOF-Diff [KG}		204	257	322	373	-264	-234
Dist-Diff [NM}		0	0	0	0	0	0
Time-Diff [MIN]		2	2	1	1	0	0

MFT and MTT of both WAFC UAD are showing identical routings. In this case only the impact of the UAD forecast on the fuel calculation is shown.

MFT routing based on KWBC UAD is identical with the MFT of EGRR UAD and about 200kg more fuel is required for a flight based on KWBC UAD.

MTT routing based on KWBC UAD is identical with the MTT of EGRR UAD and about 250kg more fuel is required for a flight based on KWBC UAD.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is about 400kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is about 300kg lower (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P041 – P043) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

MFT Routing: ANC – SJU

A-45

Routing: SJU – ANC

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	Н	-1	-2	-1	-2	2	2
TKOF-Diff							
[KG]		-552	-583	-424	-470	567	601
Dist-Diff [NM]		0	0	0	0	0	0
Time-Diff [MIN]		-1	-1	-2	-2	2	2

MFT routing based on KWBC UAD is identical with the MFT of EGRR UAD and about 600kg less fuel is required for a flight based on KWBC UAD.

MTT routing based on KWBC UAD is identical with the MTT of EGRR UAD and about 600kg less fuel is required for a flight based on KWBC UAD.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is about 450kg lower (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is about 600kg higher (MFT-E, MTT-E).

The average wind component is calculated as head wind (M018 – M021) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

(Black – GRIB1 EGRR; Blue – GRIB1

MTT Routing: SJU – ANC KWBC)

(Black - GRIB1 EGRR; Blue - GRIB1

City Pair: DXB – ORD – DXB

Routing: DXB – ORD

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp-	Ŧ	4	4	4	4	4	4
	1	-1	-1	-1	-1	1	1
TKOF-Diff							
[KG}		-236	196	347	209	-283	-195
Dist-Diff							
[NM}		-18	0	0	0	0	0
Time-Diff							
[MIN]		-1	1	2	2	-2	-1

MFT routing based on KWBC UAD is 18nm shorter and requires about 250kg less fuel..

MTT routing is identical with the MTT of EGRR UAD, but about 200kg more fuel is required for a flight based on KWBC UAD.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 350kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is up to 300kg lower (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P000 – P006) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

Routing: ORD – DXB

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-1	0	-1	-1	1	1
TKOF-Diff							
[KG]		260	83	284	379	-265	640
Dist-Diff							
[NM]		0	17	0	0	0	0
Time-Diff [MIN]		2	1	2	2	-2	-1

MFT routing is identical with the MFT of EGRR UAD, but about 250kg more fuel is required for a flights based on KWBC UAD.

MTT routing based on KWBC UAD is 17nm longer and differs over the North Atlantic from the MTT of EGRR UAD. The required fuel is marginally higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 400kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is about 250kg lower for MFT and more than 600kg higher for MTT (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P028 – P030) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

(Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

City Pair: DXB – MEL – DXB

Routing: DXB – MEL

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-3	-3	-1	-1	1	1
TKOF-Diff [KG}		208	202	292	275	-101	-104
Dist-Diff [NM}		-21	-24	0	0	0	0
Time-Diff [MIN]		1	2	2	2	-1	-1

MFT routing based on KWBC UAD is shorter and differs in the middle part from the MFT of EGRR UAD. The required fuel is about 200kg higher.

MTT routing based on KWBC UAD is longer and differs in the middle part from the MTT of EGRR UAD. The required fuel is about 200kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 300kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is about 100kg lower (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P051 – P054) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

MFT Routing: DXB – MEL

(Black - GRIB1 EGRR; Blue - GRIB1

A-55

(Black – GRIB1 EGRR; Blue – GRIB1

A-56

Routing: MEL – DXB

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	Н	3	2	3	3	-2	-1
TKOF-Diff [KG]		935	818	973	837	-712	-650
Dist-Diff [NM]		-8	0	0	0	0	0
Time-Diff [MIN]		3	3	4	4	-3	-3

MFT routing based on KWBC UAD is 8nm shorter and differs in the first part from the MFT of EGRR UAD. The required fuel is more than 900kg higher.

MTT routing based on KWBC UAD is identical with the MTT of EGRR UAD, but the required fuel is more than 800kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 1000kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is up to 700kg lower (MFT-E, MTT-E).

The average wind component is calculated as head wind (M004 – M007) with higher values for KWBC UAD. This is also reflected in the higher required fuel.

MTT Routing: MEL – DXB

A-59

City Pair: DXB – PEK – DXB

Routing: DXB – PEK

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-5	-12	-4	-4	3	2
TKOF-Diff [KG}		292	333	428	433	-384	-279
Dist-Diff [NM}		0	-80	0	0	0	0
Time-Diff [MIN]		3	3	2	2	-2	-2

MFT routing based on KWBC UAD is identical with the MFT of EGRR UAD, but the required fuel is about 300kg higher.

MTT routing based on KWBC UAD is 80nm shorter and differs in the first part significantly from the MTT of EGRR UAD. The required fuel is more than 300kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is more than 400kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is up to 400kg lower (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P054 – P066) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

MTT Routing: DXB – PEK KWBC)

(Black - GRIB1 EGRR; Blue - GRIB1

Routing: PEK – DXB

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	Н	-3	-2	-3	-2	3	3
TKOF-Diff [KG]		-657	-444	-649	-428	639	485
[]				• • •			
Dist-Diff [NM]		0	0	0	0	0	0
Time-Diff [MIN]		-3	-2	-3	-2	3	2

MFT routing based on KWBC UAD is identical with the MFT of EGRR UAD, but the required fuel is about 650kg higher.

MTT routing based on KWBC UAD is identical with the MTT of EGRR UAD. The required fuel is more than 400kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 650kg lower (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is up to 650kg higher (MFT-E, MTT-E).

The average wind component is calculated as head wind (M016 – M045) with lower values for KWBC UAD. This is also reflected in the lower required fuel.

MFT Routing: PEK – DXB

KWBC)

MTT Routing: PEK – DXB KWBC)

(Black - GRIB1 EGRR; Blue - GRIB1

City Pair: SYD - SCL - SYD

Routing: SYD – SCL

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-2	-2	-3	-3	2	2
L							
TKOF-Diff [KG}		753	753	934	959	-635	-694
Dist-Diff [NM}		6	0	0	0	0	0
Time-Diff [MIN]		1	1	3	3	-2	-2

MFT routing based on KWBC UAD is 6nm longer and differs in the second quarter from the MFT of EGRR UAD. The required fuel is more than 750kg higher.

MTT routing based on KWBC UAD is identical with the MTT of EGRR UAD, but the required fuel is more than 750kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 1000kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is up to 700kg lower (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P051 - P054) with lower values for KWBC UAD. This is also reflected in the higher required fuel.

(Black – GRIB1 EGRR; Blue – GRIB1

MTT Routing: SYD – SCL

KWBC)

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	н	-3	-3	-2	-2	3	3
Tripfuel-Diff [KG]		-122	-148	-109	-152	147	152
Dist-Diff [NM]		-3	0	0	0	0	0
Time-Diff [MIN]		-5	-6	-4	-4	5	5

Routing: SCL – SYD

Due to tank capacity all flights are carrying the same amount of fuel. Therefore the payload difference is used to identify the differences on the impact of WAFC UAD.

MFT routing based on KWBC UAD is 3nm shorter and differs close to the destination from the MFT of EGRR UAD. The required fuel is about 125kg lower.

MTT routing based on KWBC UAD is identical with the MTT of EGRR UAD, but the required fuel is about 150kg lower.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 150kg lower (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is up to 150kg higher (MFT-E, MTT-E).

The average wind component is calculated as head wind (M043 – M046) with lower values for KWBC UAD. This is also reflected in the lower required fuel.

MFT Routing: SCL – SYD KWBC)

(Black – GRIB1 EGRR; Blue – GRIB1

MTT Routing: SCL – SYD

KWBC)

City Pair: AKL – HNL – AKL

Routing: AKL – HNL

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average							
wind-comp-							
Diff [KTS]	Т	1	1	1	1	0	-1
TKOF-Diff							
[KG}		-165	-165	-128	-128	161	46
Dist-Diff							
[NM}		14	-5	0	0	0	0
Time-Diff							
[MIN]		-1	-1	-2	-2	1	0

MFT routing based on KWBC UAD is 14nm longer and differs close to the destination from the MFT of EGRR UAD. The required fuel is about 165kg lower.

MTT routing based on KWBC UAD is 5nm and differs close to the destination from the MFT of EGRR UAD. The required fuel is about 165kg lower.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 130kg lower (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is up to 160kg higher (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P009 – P010) with higher values for KWBC UAD. This is also reflected in the lower required fuel.

Routing: HNL – AKL

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	Н	1	1	1	1	0	-1
TKOF-Diff [KG]		266	235	287	305	-276	-270
Dist-Diff [NM]		1	0	0	0	0	0
Time-Diff [MIN]		1	1	0	0	0	0

MFT based on KWBC UAD is 1nm longer and differs close to the departure airport from the MFT of EGRR UAD. The required fuel is about 260kg higher.

MTT based on KWBC UAD is identical with the MTT of EGRR UAD. The required fuel is about 240kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 300kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is up to 280kg lower (MFT-E, MTT-E).

The average wind component is calculated as head wind (M006 – M006) with higher values for KWBC UAD. This is also reflected in the higher required fuel.

MTT Routing: HNL – AKL KWBC)

(Black - GRIB1 EGRR; Blue - GRIB1

A-73

City Pair: CPT – CCS – CPT

Routing: CPT – CCS

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	0	0	0	0	0	0
TKOF-Diff [KG}		107	93	98	179	-107	-110
Dist-Diff [NM}		0	7	0	0	0	0
Time-Diff [MIN]		-1	-1	-1	0	1	1

No significant difference found for all routings. MTT based on KWBC UAD is slightly longer and requires a little bit more fuel.

The average wind component is calculated as tail wind (P002).

Routing: CCS – CPT

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average							
wind-comp-	_				_	_	
Diff [KTS]	Т	1	1	-1	-1	-2	-2
TKOF-Diff							
[KG]		-396	-390	385	396	534	522
Dist-Diff							
[NM]		3	3	0	0	0	0
Time-Diff							
[MIN]		2	2	1	1	3	3

MFT routing based on KWBC UAD is 3nm longer and differs in the second half of the routing from the MFT of EGRR UAD. The required fuel is about 400kg lower. MTT routing based on KWBC UAD is 3nm longer and differs in the second half of the routing from the MTT of EGRR UAD, but the required fuel is about 400kg lower. A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 400kg higher (MFT-K, MTT-K).

values for KWBC UAD. This is also reflected in the lower required fuel.

(Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

City Pair: GRU – MEX – GRU

Routing: GRU – MEX

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
Average wind-comp- Diff [KTS]	т	-1	-1	-1	-1	1	1
TKOF-Diff [KG}		217	231	220	242	-190	-221
Dist-Diff [NM}		2	0	0	0	0	0
Time-Diff [MIN]		0	0	1	1	-1	-1

MFT based on KWBC UAD is 2nm longer and differs in the first half of the routing from the MFT of EGRR UAD. The required fuel is about 220kg higher.

MTT based on KWBC UAD is identical with the MTT of EGRR UAD, but the required fuel is about 230kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 250kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is more than 230kg higher (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P000 – P001) with higher values for KWBC UAD. This is also reflected in the lower required fuel.

MTT Routing: GRU – MEX KWBC)

(Black - GRIB1 EGRR; Blue - GRIB1

	Avg Wind- Dir	MFT	MTT	MFT-K	MTT-K	MFT-E	MTT-E
wind-comp-							
Diff [KTS]	т	6	6	-2	-2	2	2
TKOF-Diff							
[KG]		162	168	331	331	361	355
Dist-Diff							
[NM]		-44	-44	0	0	0	0
Time-Diff							
[MIN]		0	0	2	2	2	2

Routing: MEX – GRU

MFT based on KWBC UAD is 44nm shorter and differs in more than 70% of the routing from the MFT of EGRR UAD. The required fuel is about 160kg higher.

MTT based on KWBC UAD is 44nm shorter and differs in more than 70% of the routing from the MTT of EGRR UAD. The required fuel is about 170kg higher.

A recalculation of MFT and MTT based on EGRR UAD with KWBC UAD shows that the calculated fuel is up to 350kg higher (MFT-K, MTT-K).

A recalculation of MFT and MTT based on KWBC UAD with EGRR UAD shows that the calculated fuel is more than 370kg higher (MFT-E, MTT-E).

The average wind component is calculated as tail wind (P000 – P001) for EGRR UAD and as head wind (M003- M005) for KWBC UAD. The head wind component causes the higher required fuel.

(Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

(Black – GRIB1 EGRR; Blue – GRIB1 KWBC)

A-84

Test cases February 2011

	Citypoir		Trip differenc	Distance	Wind	
	Спуран	(KG)	e		wind	ACC
1	FRA - ATL	65826		4487	M005	EGRR
						KWB
		65633	-193	4487	M004	C
2	ATI - FRA	48370		4191	P098	FGRR
2		-0070			1 000	KWB
		48656	285	4191	P095	С
0		00040		5704	DOAL	
3	LEJ - MEX	82312		5724	P015	
		82321	9	5724	P015	C
4	MEX - LEJ	65891		5474	P089	EGRR
		00005	204	E 474	DOOC	KWB
		00200	394	3474	P000	U
5	YYZ - NRT	87738		5908	P003	EGRR
						KWB
		87729	-9	5908	P003	C
6	NRT - VV7	73761		5603	P057	FGRR
0		15/01		5055	1 007	KWB
		73608	-153	5693	P057	С
_		404047				5000
1	YVR - SIN	101817		7300	M010	
		101946	129	7300	M010	C
8	SIN - YVR	98159		7041	P039	EGRR
		00262	204	7044	0020	KWB
		90303	204	7041	F 030	0
	DXB -					
9	ORD	86446		6912	P020	EGRR
		00004	045	0010	D010	KWB
		1 6000	240	0912	FUIð	
	ORD -					
10	DXB	75994		6465	P064	EGRR
		76044	047	6462	DOGO	KWB
		10211	217	0403	FU02	

WAFSOPSG/6-IP/16 Appendix A

Image: second	11	DXB - LAX	185955		7405	P024	EGRR
12 LAX - DXB 187646 7732 P043 EGRR 12 LAX - DXB 187646 7732 P040 EGRR 188818 1172 7730 P040 KWB 0RD - 122582 4960 P008 EGRR 13 EZE 122582 4960 P009 KWB 122385 -197 4960 P009 KWB C 122385 -197 4960 P009 KWB C 122385 -197 4960 P009 KWB C 122385 -197 4989 M003 EGRR 127054 -192 4989 M002 KWB 13 JNB - MEL 130707 5745 P053 EGRR 14 MEL - JNB 163661 5828 M033 EGRR 14 130707 309 5828 M034 KWB 16 MEL - JNB 163661 6352 P066 EGRR <			186640	685	7403	P022	KWB C
12 LAX - DAB 187046 7732 P043 EGRK 188818 1172 7730 P040 KWB 0RD - 122582 4960 P008 EGRR 13 EZE 122582 4960 P008 EGRR 14 ORD 122385 -197 4960 P009 C 14 ORD 127246 4989 M003 EGRR 14 ORD 127054 -192 4989 M002 C 15 JNB - MEL 130707 5745 P053 EGRR 130898 191 5745 P052 C C 16 MEL - JNB 163661 5828 M033 EGRR 163970 309 5828 M034 C C 17 SYD - SCL 143183 -1 6352 P066 EGRR 143183 -1 6352 P064 C C 18 SCL - SYD	10		107616		7720	D042	ECPP
Image: style	12	LAX - DAB	107040		1132	F043	KWB
Image: Normal synthetic syntheter syntheter syntheter syntheter syntheter syntheter synthete			188818	1172	7730	P040	C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
13 EZE 122382 4960 P008 EGRR 1 122385 -197 4960 P009 C 14 ORD 127246 4989 M003 EGRR 14 ORD 127054 -192 4989 M002 C 15 JNB - MEL 130707 5745 P053 EGRR 15 JNB - MEL 130707 5745 P052 C 16 MEL - JNB 163661 5828 M033 EGRR 16 MEL - JNB 163661 5828 M034 C 17 SYD - SCL 143184 6352 P066 EGRR 18 SCL - SYD 185017 6732 M014 EGRR 19 LAX - SYD 100279 6635 M001 C 19 LAX - SYD 100279 6635 M001 C 20 SYD - LAX 95365 6626 P028 C	40	ORD -	400500		4000	Dooo	FORD
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	EZE	122582		4960	P008	
Image: second			122385	-197	4960	P009	C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
14 ORD 127246 4989 M003 EGRR 127054 -192 4989 M002 C C 15 JNB - MEL 130707 5745 P053 EGRR 15 JNB - MEL 130707 5745 P052 C 16 MEL - JNB 163661 5828 M033 EGRR 16 MEL - JNB 163970 309 5828 M034 C 17 SYD - SCL 143184 6352 P066 EGRR 18 SCL - SYD 185017 6732 M014 EGRR 18 SCL - SYD 100279 6635 M002 EGRR 19 LAX - SYD 100279 6635 M001 C 19 LAX - SYD 100065 -214 6635 M001 C 20 SYD - LAX 95365 6626 P027 EGRR KWB 20 SYD - LAX 95365 6626 P028 C		EZE -					
	14	ORD	127246		4989	M003	EGRR
127034 -192 4989 1002 C 15 JNB - MEL 130707 5745 P053 EGRR 130898 191 5745 P052 C C 16 MEL - JNB 163661 5828 M033 EGRR 16 MEL - JNB 163661 5828 M033 EGRR 17 SYD - SCL 143184 6352 P066 EGRR 17 SYD - SCL 143184 6352 P064 C 18 SCL - SYD 185017 6732 M014 EGRR 19 LAX - SYD 100279 6635 M002 EGRR 19 LAX - SYD 100279 6626 P027 EGRR 20 SYD - LAX 95365 6626 P028 C			107051	100	4090	MOOD	KWB
15 JNB - MEL 130707 5745 P053 EGRR 130898 191 5745 P052 C 10 130898 191 5745 P052 C 16 MEL - JNB 163661 5828 M033 EGRR 16 MEL - JNB 163661 5828 M034 C 17 SYD - SCL 143184 6352 P066 EGRR 17 SYD - SCL 143183 -1 6352 P064 C 18 SCL - SYD 185017 6732 M014 EGRR 19 LAX - SYD 100279 6635 M002 EGRR 19 LAX - SYD 100279 6635 M001 C 20 SYD - LAX 95365 -214 6635 M001 C 20 SYD - LAX 95365 6626 P027 EGRR			127054	-192	4909	IVIUU2	C
NE NEE	15	JNB - MEI	130707		5745	P053	FGRR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100101		0110	1 000	KWB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			130898	191	5745	P052	C
16 MEL - JNB 163661 5828 M033 EGRR 16 163970 309 5828 M034 KWB 17 SYD - SCL 143184 6352 P066 EGRR 17 SYD - SCL 143183 -1 6352 P064 C 18 SCL - SYD 185017 6732 M014 EGRR 18 SCL - SYD 185017 6732 M014 EGRR 19 LAX - SYD 100279 6635 M002 EGRR 20 SYD - LAX 95365 6626 P027 EGRR 20 SYD - LAX 95365 6626 P028 C							
Image: Mark Mark Mark Mark Mark Mark Mark Mark	16	MEL - JNB	163661		5828	M033	EGRR
103970 309 3828 10034 0 0 17 SYD - SCL 143184 6352 P066 EGRR 17 SYD - SCL 143183 -1 6352 P064 C 18 SCL - SYD 185017 6732 M014 EGRR 18 SCL - SYD 185017 6732 M014 EGRR 19 LAX - SYD 100279 6635 M002 EGRR 19 LAX - SYD 100279 6635 M001 C 20 SYD - LAX 95365 6626 P027 EGRR KWB 95211 -154 6626 P028 KWB			162070	200	5000	M024	KWB
17 SYD - SCL 143184 6352 P066 EGRR 143183 -1 6352 P064 C 143183 -1 6352 P064 C 18 SCL - SYD 185017 6732 M014 EGRR 18 SCL - SYD 185017 6732 M014 EGRR 18 SCL - SYD 185017 6732 M014 EGRR 18 185036 19 6732 M014 EGRR 19 LAX - SYD 100279 6635 M002 EGRR 19 LAX - SYD 100065 -214 6635 M001 C 20 SYD - LAX 95365 6626 P027 EGRR 20 SYD - LAX 95365 6626 P028 KWB 20 SYD - LAX 95365 6626 P028 KWB			103970	309	5020	10034	C
Image: Normal state of the	17	SYD - SCL	143184		6352	P066	EGRR
143183 -1 6352 P064 C 18 SCL - SYD 185017 6732 M014 EGRR 18 SCL - SYD 185017 6732 M014 EGRR 18 SCL - SYD 185036 19 6732 M014 EGRR 19 LAX - SYD 100279 6635 M002 EGRR 19 LAX - SYD 100265 -214 6635 M001 C 20 SYD - LAX 95365 6626 P027 EGRR KWB 20 SYD - LAX 95365 6626 P028 KWB C							KWB
Image: Mark Mark Mark Mark Mark Mark Mark Mark			143183	-1	6352	P064	С
18 SCL - SYD 185017 6732 M014 EGRR 18 185036 19 6732 M014 C 19 LAX - SYD 100279 6635 M002 EGRR 19 LAX - SYD 100279 6635 M002 EGRR 20 SYD - LAX 95365 6626 P027 EGRR 20 SYD - LAX 95365 6626 P028 KWB 20 SYD - LAX 95365 6626 P028 KWB	10		405047		0700	14044	5000
185036 19 6732 M014 C 19 LAX - SYD 100279 6635 M002 EGRR 19 LAX - SYD 100279 6635 M002 EGRR 10 100065 -214 6635 M001 C 20 SYD - LAX 95365 6626 P027 EGRR 95211 -154 6626 P028 KWB	18	SCL - SYD	185017		6732	M014	EGRR
19 LAX - SYD 100279 6635 M002 EGRR 19 LAX - SYD 100279 6635 M002 EGRR 100065 -214 6635 M001 C 20 SYD - LAX 95365 6626 P027 EGRR 95211 -154 6626 P028 KWB C			185036	19	6732	M014	
19 LAX - SYD 100279 6635 M002 EGRR 100065 -214 6635 M001 C 100065 -214 6635 M001 C 20 SYD - LAX 95365 6626 P027 EGRR 95211 -154 6626 P028 C			100000	10	0102		Ŭ
Image: Note of the second se	19	LAX - SYD	100279		6635	M002	EGRR
100065 -214 6635 M001 C 20 SYD - LAX 95365 6626 P027 EGRR 95211 -154 6626 P028 C							KWB
20 SYD - LAX 95365 6626 P027 EGRR 4 95211 -154 6626 P028 C			100065	-214	6635	M001	C
20 SYD-LAX 95365 6626 P027 EGRR 95211 -154 6626 P028 C	20		05005		0000	DOOZ	
95211 -154 6626 P028 C	20	STD-LAX	90300		0020	P027	
			95211	-154	6626	P028	C
21 DXB - PEK 40256 3323 P070 EGRR	21	DXB - PEK	40256		3323	P070	EGRR
KWB			10/10	400		Dear	KWB
40449 193 3323 P067 C			40449	193	3323	P067	C
22 PEK - DXB 54054 3245 M066 ECPP	22		54054		3245	MORE	FCBD
22 TEN DAD 34034 3243 WI000 EGRA	22		54054		5245	10000	KWR
53737 -317 3245 M064 C			53737	-317	3245	M064	C

	DXB -					
23	GRU	89201		6832	P000	EGRR
		80571	370	6832	M002	KWB C
		03071	570	0032	1002	0
	GRU -					
24	DXB	82546		7078	P063	EGRR
					5	KWB
		83213	667	7101	P059	C
	MUC -					
25	HKG	64045		5058	P061	EGRR
						KWB
		64297	252	5058	P059	С
26	HKG -	80043		5177	M016	EGRR
20	NICC	00043		5177		KWB
		79931	-112	5177	M015	C
27	LHR - CPT	78785		5331	P003	EGRR
		70000	040	5004	DOOD	KWB
		78998	213	5331	P002	U
28	CPT - LHR	79825		5334	P000	EGRR
						KWB
		79712	-113	5334	P001	С
		05050		7000	D 007	5000
29	KWI - MEL	85956		7036	P037	
		86242	286	7036	P035	C NVD
		002.12			1 000	
30	MEL - KWI	89946		6826	M004	EGRR
						KWB
		90003	57	6827	M004	C
31		65136		4621	P015	FGRR
51		00100		7021	1013	KWB
		65247	111	4621	P014	С
32	SYD - ICN	71799		4942	P010	EGRR
		71707	C	1012	P010	KWB
		11191	-2	4342	FUIU	
33	CPT - SCL	121274		4519	M029	EGRR
						KWB
		120270	-1004	4519	M026	С
					1	

WAFSOPSG/6-IP/16 Appendix A

A-88

34	SCL - CPT	98883		4420	P048	EGRR
						KWB
		99588	705	4420	P044	С
35	SYD - EZE	159450		6927	P064	EGRR
						KWB
		160386	936	6927	P061	С
36	EZE - SYD	189549		6932	M008	EGRR
						KWB
		189356	-193	6932	M008	C

	Fuel Diff	Distance
Summary	4795	419618

— END —