

International Coordinating Council of Aerospace Industries Associations

Preventing Runway Excursions

Technical solutions From the Design and Manufacturing Sector

By Claude Lelaie

ICAO Global Runway Safety Summit

Today, main cause of accidents is Runway Excursion

Main factors of Runway Overrun at landing

- No approved in-flight realistic operational landing distance
- Stabilization not achieved at 1000/500 ft
- Wind shift at low altitude
- Approach becoming unstable at low altitude
- Long flare
- Long derotation
- Late selection of engine thrust reversers
- Runway friction coefficient lower than expected
- Late/weak manual braking (w/o or after AB disc)
- Failure affecting the landing distances

A vast majority of overruns at landing is avoidable

For Runway Excursion Risk, only a combined prevention approach should be effective As it was for CFIT and Mid-Air collisions

International Coordinating Council of Aerospace Industries Associations

Like E-GPWS & TCAS, on-board technology will be key to mitigate Runway Excursion Risk But clear different design intents exist

Smartlanding[™] is a Honeywell function of the E-GPWS:

- Monitoring A/C speed and position vs. runway threshold
- Providing visual/aural annunciations to enhance crew awareness of unstabilized approach
- Based on tuning defined by Honeywell (speed, glideslope) or set by airlines (long landing distance)

As considered as a "non interferent" function, no demonstration is requested by FAA on Smartlanding[™] tuning relevance

A bit more on Airbus Runway Overrun Prevention System (ROPS)

A bit more on Airbus Runway Overrun Prevention System (ROPS)

- EASA consideration for ROPS certification
 - Request to demonstrate the relevance of ROPS alerts and protections (no unprotected area, no undue conservatism)
 - Principle: "If no ROW alert before decision point Then, thanks to ROP, no runway excursion While no significant increase of go-around rate"
- Translation into ROPS design objectives
 - Continuous real time performance computation of predicted and remaining realistic operational landing distance
 - Compare in real time with runway end
 - Trigger, only when necessary, simple and clear alerts with simple SOP
 - Guarantee both reliability and not excessive margins
 - Ensure consistency with FAA TALPA rule and computation philosophy
 - Avoid any additional tuning by airline
 - In obvious complement of the necessary need to fly stable approach

International Coordinating Council of Aerospace Industries Associations

Conclusion

- Despite clear different design intent, easy-to-install flight deck solutions exist
- A significant fleet coverage is needed to achieve widespread safety benefit