

Introduction to ICAO Environmental Trends

ICAO Committee on Aviation Environmental Protection (CAEP)

2022

Definitions

- **ASK:** Available Seat Kilometers
- **ATK:** Available Tonne Kilometers
- **RPK:** Revenue Passenger Kilometers
- RTK: Revenue Tonne Kilometers
- LTF: ICAO Long-term Traffic Forecast (passenger/freighter markets)
- **IBAC:** International Business Aviation Council (provides inputs for business jet forecast)
- ICAO Route Group: ICAO defined country and airport pair combinations
 - 51 ICAO route groups in the LTF
 - Covers international and domestic traffic (e.g., North America Domestic represents all domestic flights in U.S. and Canada)
- ICAO/CAEP Region: ICAO defined regions and airport pair combinations 6 regions in the LTF
- Distance Bands: Aligns airport pairs within an ICAO route group by flight distance
 - Eighteen distance bands in 500nm (nautical mile) increments (0 8500+)
- Seat Class: Defines fleet evolution market type and capacity (e.g., Narrow Body 101-125 seats, Wide Body 211-300 seats)
 - Example of aircraft by market: Turbo prop: ATR72, Regional Jet: E175-E2, Narrow Body: B737-MAX8, A320-NEO, Wide Body: A330-9NEO, B787-8

Orientation

A gray arrow indicates a step in or an input to a process.

 A red arrow indicates an assumption or a specific methodology.

 A stacked cylinder represents a database.

- 1. Databases
- Trends Modelling and Assumptions
 2a. Fleet & Operations Forecasting and Assumptions
 2b. Environmental Modelling and Assumptions
- 3. Trends Results

1. Databases

ICAO, 2022 ©

Common Operations Database (COD)

The COD is built using:

The COD contains a list of flights worldwide (but not their trajectories) for a given recent year.

Common Operations Database

 Flight Aware and OAG are commercial databases and used with appropriate licenses.

The major components of the Fleet Database are:

Aircraft Noise and Performance Database (ANP) (280+)

Aircraft Fleet Registry (83,000+)

- Base of Aircraft Data (BADA) (200+)
- Engine Emissions Data Bank (EEDB) (600+)
- PIANO Aircraft Performance and Emissions Database (500+)

The Fleet Database contains a list of aircraft in production or in service with their noise and emissions characteristics.

- BADA and PIANO are proprietary databases and used in the respective tools with appropriate licenses.
- Among other uses, the Fleet Database supports the analysis used to develop the retirement curves overviewed in Slide 21.

Airports Database

The major components of the Airports Database are:

Coordinates, Country, ICAO/CAEP Region (7900+)

Airport Flight Tracks and Runway Utilization for Noise Modelling

Airport details including Name, Codes,

Airports Database

Sources: Eur. HERE, Garmin, FAO, NOAA, USOS, @ OpenStreetMap contributors, and the GIS Liver Community

Airports Database: OD Pairs

Airport pairs are assigned:

- ICAO/CAEP Region based on departure airport country.
- ICAO Route Group (or Longterm Forecast (LTF) Route Group) based on departure and arrival airport LTF regions.

Sources: Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community

Airports Database: ICAO Route Groups

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

ICAO, 2022 ©

G&R Database defines aircraft available to enter fleet for growth and replacement.

- In production aircraft in base analysis year or aircraft entering service in near future based on industry announcements.
- Passenger, freighter and business jet markets.

Other Databases

Noise Certification Database

- NoisedB is a publicly available database.
- NoisedB contains noise levels of certified aircraft.
- Uses ICAO standards and recommended practices or Code of Federal Regulation, Title 14, part 36.
- Current Version: 2.29

Population Database (Noise Modelling Only)

- U.S. Census (2010)
- U.K. Census (2011) (Extrapolated to 2015)
- Mainland Europe EEA Census (varies by country)
- Brazilian Census (2010)
- GPW Version 4 (2010)

Engine Emissions Data Bank

- ICAO Aircraft Engine Emissions Databank contains information on exhaust emissions of production aircraft engines.
- Measured according to the procedures in ICAO Annex 16, Volume II, and where noted, certified by the Countries of Design of the engines according to their national regulations.
- Current Version: 26A

EEA: European Economic Area; GPW: Gridded Population of the World

2. Trends Modelling and Assumptions

Step 1: Forecast demand and fleet by market. (Passenger, Freighter, and Business Jet) Step 2: Model the noise, fuel burn, and emissions based on forecasted fleet. Step 3: Present results of the trends analysis.

Fleet & Operations Forecasting Process

FESG Fleet Forecast Output

Fleet forecasts by market type (passenger, freighter and business jet) and defined by ICAO route group, distance band and seat class.

COD Database

Base-Year network, operations by airport pair, ICAO route group, distance and seat class, and aircraft type.

Growth and Replacement Database

Provides details of aircraft (e.g., type (narrow body, turboprop, etc.), capacity, available to enter fleet in future years).

Aircraft Retirement Curves

By market (e.g., commercial narrow body, freighter wide body, etc.).

Fleet Evolution Modelling

Fleet Evolution Models generate future fleet mix — base year and future operations by airframe/engine combination, airport pair and aircraft year of entry into fleet

More detail on fleet evolution is provided in the Appendix.

Fleet Evolution Modelling

More detail on year-on-year fleet rollover, retirement curves, and application technology improvements is provided in the Appendix. **Both Growth and Replacement** operations are introduced annually. FESG retirement curves define the rate at which in-service aircraft are retired from the active fleet.

Fleet Evolution Outputs:

- Operations by OD pair
- Fleet Mix
- Fleet Entry into Service Year

Fleet Evolution Models specify aircraft type, and moves demand from ICAO route groups to OD pairs.

2b. Environmental Modelling

Environmental Modelling

ICAO, 2022 ©

CA0 2b. GHG (Full Flight) and LAQ Modelling

Inputs:

- Operations input is grouped into distinct aircraft types and representative distances and used as a proxy to cover the entire set of base year and future operations.
 - Standard Day Sea Level Airport, 8 knots headwind at take off and zero enroute wind conditions.
 - Great Circle Ground Tracks including adjustments* for fuelburn and emissions.
 - Full Takeoff Power and All Engines used for taxiing.

*Up to CAEP/11 cycle historical radar trajectories derived adjustments were used. Starting CAEP/12 cycle, ICAO/CAEP working group 2 provided values are used.

2b. GHG and LAQ Future Years Processing

Fuel Factor is a multiplicative coefficient applied to fuelburn and the following emissions: CO₂, HC, CO, nvPM, and vPM.

NOx Factor is a multiplicative coefficient applied only to NOx.

2b. GHG and LAQ Operational Improvements

Route Group	2025 Goal	2035 Goal	2045 Goal	
AFRICA	0.951	0.917	0.883	1
AMERICAS - CHINA / MONGOLIA	0.966	0.948	0.931	1
AMERICAS - INDIA / SOUTHWEST ASIA	0.966	0.948	0.931	1
AMERICAS - OTHER ASIA / PACIFIC	0.966	0.948	0.931	1
CHINA / MONGOLIA	0.936	0.899	0.863	1
FUROPE	0.937	0.902	0.868	1
EUROPE - AFRICA	0.962	0.936	0.911	N
EUROPE - CHINA / MONGOLIA	0.964	0.944	0.925	
EUROPE - INDIA / SOUTHWEST ASIA	0.964	0.944	0.925	
EUROPE - MIDDLE EAST	0.969	0.943	0.918	
EUROPE - OTHER ASIA / PACIFIC	0.964	0.944	0.925	
INDIA / SOUTHWEST ASIA	0.936	0.899	0.863	
INTRA AFRICA	0.961	0.933	0.905	
INTRA ASIA / PACIFIC	0.955	0.930	0.907	
INTRA EUROPE	0.950	0.921	0.892	
INTRA LATIN AMERICA	0.951	0.919	0.888	
INTRA MIDDLE EAST	0.943	0.909	0.877	
INTRA NORTH AMERICA	0.930	0.893	0.858	
JAPAN	0.936	0.899	0.863	
LATIN AMERICA	0.946	0.911	0.877	
MID ATLANTIC	0.964	0.945	0.927	
MIDDLE EAST	0.935	0.897	0.860	
MIDDLE EAST - CHINA / MONGOLIA	0.961	0.940	0.920	
MIDDLE EAST - INDIA / SOUTHWEST ASIA	0.961	0.940	0.920	
MIDDLE EAST - OTHER ASIA / PACIFIC	0.961	0.940	0.920	
NORTH AMERICA	0.931	0.898	0.866	
NORTH AMERICA - CENTRAL AMERICA / CARIBBEAN	0.950	0.921	0.893	
NORTH AMERICA - SOUTH AMERICA	0.962	0.938	0.914	
NORTH ATLANTIC	0.964	0.945	0.927	
OTHER ASIA / PACIFIC	0.936	0.899	0.863	
OTHER INTERNATIONAL ROUTES	0.956	0.927	0.899	
SOUTH ATLANTIC	0.966	0.948	0.931	

Route Group	2025 Goal	2035 Goal	2045 Goal
AMERICAS - CHINA / MONGOLIA	0.966	0.948	0.931
AMERICAS - INDIA / SOUTHWEST ASIA	0.966	0.948	0.931
AMERICAS - OTHER ASIA / PACIFIC	0.966	0.948	0.931
CHINA / MONGOLIA	0.936	0.899	0.863
EUROPE	0.937	0.902	0.868

Operational improvement is a multiplicative coefficient applied to fuelburn and all emissions.

The values shown are examples for illustrative purposes only.

2b. GHG Alternative Fuels

- The potential for sustainable aviation fuel (SAF) production was evaluated using a scenario-based approach based on, inter alia, the IPCC socioeconomic pathways, location-specific agricultural yields for a wide set of feedstock's, SAF fuel conversion efficiency assumptions, and different ambition levels by policy-makers.
- The **scenario results ranged** from zero production to as high as full jet fuel replacement by 2050.
- The illustrative case from this analysis would lead to **emissions reduction of approximately 19%**, but would require high availability of bioenergy feedstock's, whose production, and use for aviation biofuels would need to be significantly incentivized by price or other policy mechanisms.

2b. Noise Modelling

More detail on noise modelling is provided in Appendix.

2b. Noise Modelling

Noise contour map for an airport showing Day Night Noise level (DNL)

- Blue lines: 55 dB DNL
- Green lines: 60 dB DNL
- Orange lines: 65 dB DNL

2b. Noise Future Years Processing

^{ICA0} 2b. Noise Technology Improvements

Noise Factor is a multiplicative coefficient applied to noise operations before running noise models.

Results:

- GHG and LAQ Results
- Full Flight Fuelburn and CO₂
- Full Flight NOx
- Full Flight nvPM
- LAQ (Below 3000 feet) NOx
- LAQ (Below 3000 feet) nvPM + vPM
- LAQ (Below 3000 feet) CO and HC (computed but not reported)

Tables and Graphics reported by ICAO/CAEP region, International Only and International plus Domestic (Global):

- Noise Results
- Day Night Average Sound Level (DNL) Contour Area
- DNL Population Exposure

ICAO Fuel Efficiency is measured as Fuel per Revenue Tonne Kilometer and 2% per annum is the long-term aspirational goal.

Analysis Year

Total Population Exposed to Noise Above 55 DNL from International Aviation

- LAQ Dispersion modelling for a limited number of airports as a feasibility study.
- Fleet evolution modelling using a hybrid (discrete aircraft technology improvements up to certain year and then switch per annum improvements).
- Population forecasting.
- Airport constrained forecast used for fleet evolution.

- Links
- Fleet Evolution Models
- Environmental Modelling
 - GHG Models
 - Noise Models
 - LAQ Models
- Fleet Technology Rollover
- Retirement Curves

• Base of Aircraft Data (BADA):

https://simulations.eurocontrol.int/solutions/bada-aircraft-performance-model/

• PIANO:

https://lissys.uk/index2.html

- Engine Emissions Data Bank (EEDB): <u>https://www.easa.europa.eu/easa-and-you/environment/icao-aircraft-engine-</u> <u>emissions-databank#group-easa-downloads</u>
- Aircraft Noise and Performance (ANP): <u>https://www.aircraftnoisemodel.org/</u>
- Noise Certification Database (NoisedB): <u>http://noisedb.stac.aviation-civile.gouv.fr/bdd</u>
- Gridded Population of the World (GPW v4): <u>https://sedac.ciesin.columbia.edu/data/collection/gpw-v4</u>

Fleet Evolution Models

	FOM	FLEET-Builder	AAT
Used for	CAEP 5 – 11	CAEP 12+	CAEP 10+
Developed by	U.S. FAA	U.S. FAA	EASA and EUROCONTROL, EC
Model Name	Fleet and Operations Module	FLEET-Builder	Aircraft Assignment Tool

FLEET-Builder was designed to replicate the FOM fleet evolution approach for Trends.

Environmental Modelling: GHG Models

	AEDT	IMPACT	FAST
Used for	CAEP 9+	CAEP 11+	CAEP 9+
Developed by	U.S. FAA	ECTL	U.K. MANCHESTER METROPOLITAN UNIVERSITY
Model Name	<u>Aviation Environmental</u> <u>Design Tool</u>	Integrated Aircraft Noise and Fuel Burn and Emissions Modelling Platform	Future Civil Aviation Scenario Software Tool

ICA0 Environmental Modelling: Noise Models

	AEDT	STAPES	ANCON
Used for	CAEP 9+	CAEP 10+	CAEP 8+
Developed by	U.S. FAA	ECTL, EC and EASA	U.K. CAA
Model Name	<u>Aviation Environmental</u> <u>Design Tool</u>	SysTem for AirPort noise Exposure Studies	<u>Aircraft Noise</u> <u>Contour Model</u>

ICAO Environmental Modelling: LAQ Models

	AEDT	OPEN-ALAQS	LASPORT	PolEmiCa
Used for	CAEP 9+	CAEP 12+	CAEP 8+	CAEP 12+
Developed by	U.S. FAA	ECTL	JANICKE CONSULTING	Ukraine, NAU
Model Name	<u>Aviation</u> <u>Environmental</u> <u>Design Tool</u>	<u>Open-ALAQS</u>	<u>LASAT for</u> <u>Airports</u>	Pollution and Emission Calculation

Fleet Technology Rollover

New cohorts of aircraft performance improves year-on-year based on the technology scenarios defined by WG1 and WG3

Retirement Curves

Retirement curves developed using historical data on aircraft retirements by age.

Curves developed for all markets: passenger, freighter and business jet.

