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Outline

• LAAS Program Background
• Integrity Analysis and Prototype 

Development
• GBAS Approval Process 
• International Cooperation
• CAT-III Research & Development Activities
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The Next Generation Air Transportation System 
(NextGen) Plan Defines A System That Can Meet 
Demands For The 21st Century

Trajectory-Based Operations

Performance-Based  
Operations and Services

Precision Navigation

Weather Integration

Network-Centric 
Information Sharing

Surveillance Services

Equivalent Visual Operations

Super Density Operations

Layered, Adaptive Security

Capabilities
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LAAS and Next Gen

• The FAA has identified LAAS as 
a “Contributor” program for 
NextGen. 

• The Operational Evolution Partnership (OEP) identified 
GBAS as one of the enabling technologies in the OEP 
plan that directly supports the transformation of the 
National Airspace. 

• LAAS was cited as a promising solution in the New York/ 
New Jersey flight delay Task Force Report (December 6, 
2007).  The report recommends accelerating the 
development of LAAS.
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LAAS Capabilities
• The Local Area Augmentation System (LAAS) Represents the U.S. 

Approach to the International Goal of an Interoperable GBAS 
Capability

• LAAS Provides a Navigation Signal That Supports the Most 
Demanding RNP Requirements

• LAAS is complementary to SBAS 
• One LAAS Can Cover the Entire Terminal Area and Enables 

Precision Guidance
– Precision approach for Category I, II & III
– Multiple runway coverage
– Complex procedures Guided missed approaches and departure 

procedures
– Aircraft surface navigation
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LAAS

GPS

Antenna

Base Station
Computes
Differential
Corrections,
Provides 
Integrity
Check & 
Provides
Approach
Coordinates

Broadcast Information

Differential Corrections,
Integrity Status and
Approach Coordinates

Transmitter
Encoder

DATALINK
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Program Background
• Program Baseline Completed in 1999
• Established Government Industry Partnership (GIP) For Category-I 

Development in 1999
• GIP Experienced Delays Due to Integrity Issues
• In 2001, Strategy Changed To FAA Full Scale Development 

Contract for Category- I LAAS
• Contract Awarded To Honeywell In April 2003

– Aggressive Schedule and Integrity Issues Resulted In Delays
• FAA Directed Program Back To R&D In February 2004

– Lower Overall Program Risk, Resolve Integrity Issues
• Honeywell Contract Re-Structured To Resolve Integrity Risks

– Restructure LAAS Integrity Panel & Develop Provably Safe Prototype
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Current Activities
• Integrity Analysis and Prototype Development

– Honeywell Contract 
– Deliver Honeywell SLS4000 GBAS

• GBAS Approval Process 
– System Design Approval - Audits in progress

• LAAS Operational implementation
– Memphis prototype installation

• CAT III LAAS
– CAT II/III ground facility specification
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GBAS Integrity Method
• Integrity Analysis and Prototype Development

– FAA GBAS prototype work under Honeywell Contract 
– Hazardous Misleading Information (HMI) Analysis underway to 

validate GBAS architecture/design
– Responsibility for GBAS Integrity resides in the Ground 

Facility
• The user (aircraft) receives a set of integrity parameters from the LGF 

and applies those in a set of standardized equations to determine 
protection levels

• The user must check the calculated result against the requirement
– The Service Provider is responsible for ensuring that the 

uplink integrity parameters are accurate and that they 
provide the required function

• When used in the specified equations, the protection level must 
bound the user error
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Hazardously Misleading Information 
(HMI) Report

• Te HMI report details the process and assumptions that 
demonstrate a GBAS is safe.
– A similar process was effective in verifying FAA Wide Area 

Augmentation System (WAAS) integrity
– HMI report is a detailed summary of the integrity work
– Tool used to help the technical team communicate with the 

certification authority
• The core of the HMI report is a series of assertions that, when 

taken together and shown to be true, completely define the 
integrity proof

• The HMI report details the analysis used to validate the series of 
assertions.
– There are three ways to perform this validation, 

• a formal mathematical proof, 
• a data driven analysis or, 
• the consensus engineering judgment of a group of subject matter experts.  
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Hazardously Misleading Information 
(HMI) Analysis
• The five steps in the HMI analysis are:

– Formalize and obtain approval for the top level integrity architecture;
– Approve the fault trees;
– Approve the complete list of threats;
– Approve specific integrity analysis methodologies for each of the 

monitors; and
– Complete and obtain approval for the HMI analysis document.

• Note that much of the work on the above five steps has been 
accomplished under the FAA contract
– The HMI work will focus on the formal approval and documentation of 

this work.
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SYSTEM APPROVAL
•Compliance with FAA 
standards, FAA 
specification
•Software and Hardware 
validation 

FACILITY APPROVAL
• Operational  environments
• O&M Manual
• Trained maintainers
• Standard Operating      
Procedures

SERVICE APPROVAL

• AT and Pilot Training
• Instrument Flight Criteria

Instrument Flight Procedures

Flight Inspection

LAAS CAT I Approval Activities
• To be approved by FAA, system or equipment must be shown to meet

ICAO, FAA or other (e.g. RTCA) recognized standard.
– The baseline is the FAA Non-Federal LAAS Specification
– System or equipment approval is only one of the requirements for NAS 

operation.
• GBAS CAT I Approval Process

– Honeywell Submitted Application for SLS 4000 System Approval in 2006
– System Design Approval (SDA) for Honeywell architecture in progress
– Facility and Service Approval for Memphis planned for 2008
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LAAS Operational Implementation
• GBAS Implementation Activities 

in Memphis
– GBAS Procedures for Memphis 

Airport (MEM)
– LAAS straight in procedures for all 

runway ends 
– Developed GBAS Terminal Area 

Path (TAP) procedures 
– Coordination with MEM Air Traffic 

Control
– Performing flight test with FAA 

Technical Center Aircraft and 
FedEx B727 aircraft

Memphis
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CAT II/III 
• Near term initiative for single frequency 

CAT II/III GBAS
– Ground rule: minimal changes to ground facility and 

transfer of some requirement responsibility to the 
aircraft

– Develop requirements in line with current ILS auto-
land criteria

– Initial Requirement allocation proposal submitted by 
joint FAA/Boeing WG to RTCA 
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Agana, Guam

Frankfurt, Germany
Memphis, Tenn.

Rio De Janeiro, Brazil

Malaga, Spain

LAAS International Efforts

Sydney, Australia

Bremen, Germany
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International GBAS Working Group
• Chairpersons,

– FAA-EUROCONTROL
• Scope

– Discuss national and international GBAS plans and identify areas of cooperation and 
complementary activities, like GBAS integrity analysis, ionospheric data collection, 
safety assessments, early operational implementation activities 

• Group Composition
– Nations/Service Providers: FAA, EUROCONTROL, DFS Germany, AENA Spain, 

Airservices Australia, JCAB Japan, Korea,  China, and DECEA Brazil. 
– Industry: Honeywell, Thales, LENS/MERC, NEC, Rockwell Collins, Boeing, AIRBUS.
– Airlines: Continental Airlines, All Nippon Airways, Japan Airlines, Qantas.

• Accomplishments
– Better understanding and practice of GBAS system approval, and the use of common 

test cases and tools 
– Transition from information exchange to working meeting 

• Test cases and data evaluation WG 
• Local business case WG 
• Operational implementation WG
• Siting WG



Federal Aviation
Administration

April 14-16, 2008 FAA GBAS Activities 17

Industry/International Activities

– Airbus
• A380 GBAS equipped landing at 

Sydney
• A 320 GLS certified

– Boeing
• B 737 New Generation GLS certified 

– Qantas, Delta, Continental, TUIfly, Sonair, 
Air Berlin, Air Vanuatu

• B787 rolled out with GBAS as 
standard equipment

– Multiple companies researching/developing versions of GBAS  
(Honeywell, Thales, Lens, NPPF Spectr)

– Countries planning to incorporate GBAS into their airspace (US, 
Australia, Germany, Spain, Italy, Brazil, Russia, Japan, Korea, China, 
Chile)  

– FAA MoCs with Australia, Spain, Germany, Chile
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International GBAS FAA Cooperation 
Activities

• MOC Airservices Australia (AsA)
– CASA – Sydney operations
– AsA-Honeywell Development contract

• MOC DFS Germany
– TUI Flight Bremen flight trials

• MOC AENA Spain
– December 2007 AENA flight trials with 

A 320 in Malaga
– Coordination Meetings with 

AENA/Spain
• Coordination with DECEA Brazil

– FAA Technical Center GBAS System 
– GBAS Flight Test
– GBAS CONOPS

• Chile MOC for GBAS cooperation

Malaga A320 Flight Test
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GBAS Summary
• HMI analysis to validate that the CAT I system meets 

integrity design requirements 
• Continuation of regulatory approval for the HI LAAS at 

Memphis, TN in 2008
• Facility and Service Approval at Memphis in early 2009
• Continued data collection/flight test to validate 

operational benefits (national/international) 
• Coordination of development and approval activities 

with International community
• R&D to develop and validate CAT II/III requirements to 

support a  2008 CAT II/III decision point
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Questions
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Overview

• GBAS Integrity Method
• Current Work

– Completion of the HMI Report
• Recent Accomplishments

– Formulation of IRCAs and issue Tiger Teams
• Issues

– Technical
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GBAS Integrity Method
• Responsibility for GBAS Integrity resides in the 

Ground Facility
– The user (aircraft) receives a set of integrity parameters from the 

LGF and applies those in a set of standardized equations to 
determine protection levels

– The user must check the calculated result against the requirement
• A protection level bound, or Alert Limit, is transmitted from the LGF 

with each procedure
• The Service Provider is responsible for ensuring that 

the uplink integrity parameters are accurate and that 
they provide the required function
– When used in the specified equations, the protection level must 

always* bound the user error
• *The probability of not bounding is the required integrity probability, 

CAT I is 2.0x10-7 per approach 
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FAA LAAS Flight Test @ ACY
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Current Work
Hazardously Misleading Information (HMI) Report

• An HMI report details the process and assumptions 
that demonstrate a GBAS is safe.
– A similar process was effective in verifying FAA Wide Area 

Augmentation System (WAAS) integrity
– HMI report is a detailed summary of the integrity work
– Tool used to help the technical team communicate with the 

certification authority
• The core of the HMI report is a series of statements 

that, when taken together and are shown to be true, 
completely define the integrity safety case
– Called the Integrity Risk Compliance Argument (IRCA)

• The HMI report contains the IRCA list as well as a 
summary of the ADD material for each IRCA 
statement
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Hazardously Misleading Information 
(HMI) Analysis
• The five steps in the HMI analysis are:

– Formalize and obtain approval for the top level integrity 
architecture;

– Approve the fault trees;
– Approve the complete list of threats;
– Approve specific integrity analysis methodologies for each of 

the monitors; and
– Complete and obtain approval for the HMI analysis document.

• Note that much of the work on the above five steps 
has been accomplished under the FAA PSP 
contract
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Recent Accomplishments

• Formulation of design-specific Integrity 
Risk Compliance Argument (IRCA) 
statements
– System design Algorithm Description Documents 

(ADDs) for the Honeywell SLS-4000 were accepted 
by the FAA with comments

– Resolution of the comments remained an issue 
• Tiger teams, small focused group, were 

formed to resolve specific HMI issues, 
remaining ADD comments, and work the 
final design details
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HMI Report IRCA Contents

• All sections of each IRCA compiled for the HMI report will 
conform to the following: 

X.X.1 Threat Discussions (high level) 
X.X.2 Algorithm Description (high level) 
X.X.3 Integrity Risk Compliance Argument (assertions, etc.) 
X.X.3.1 Threat or Threat Model 
X.X.3.2 Method (Higher-level method techniques) 
X.X.3.3 Models / Methods (details of implementation) 
X.X.4 Justification of All X.3.3 Sections 

Detailed Algorithm 
Analyzed Data 
Validation 

X.X.5 Dependencies 
X.X.6 Conservative Methods 
X.X.7 Data Sets (locations and quantity of days….) 
X.X.8 Conclusions 
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Technical Issues

• Current Tiger Team Activities 
– Ionospheric storm integrity

• Backup Slides
– Ephemeris Monitoring
– Signal Deformation Monitoring and bounding of 

“Natural biases”
– Sigma Pseudorange Ground
– Tropospheric Error Bounding
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GBAS Ionospheric Storm Integrity

• Ionospheric Storm Threat and Integrity
• Threat Model
• Threat Mitigation
• Issues

– DCPS
• Summary
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Ionospheric Storm Integrity

• Ionospheric storm activity unobservable to a GBAS 
station can not be mitigated by detection

• The GBAS airborne user can be impacted by a 
storm before the ground facility can see it, and 
integrity could be compromised
– These cases must be shown to be sufficiently rare, or mitigated

• The Ionospheric tiger team has determined a 
solution for the CAT I system
– The results are based on ionospheric storm threat model 

created from data collected within CONUS and assumptions 
about how a user will be threatened

– Other implementer must evaluate their ionospheric 
environment to ensure that the CONUS threat model contains 
potential threats in their regions of interest
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Ionosphere Anomaly Wave Front Model:
Potential Impact on a GBAS User

Simplified Ionosphere Wave Front Model:
a ramp defined by constant slope and width

Front Speed
200 m/s

Airplane Speed 
~ 70 m/s

(synthetic baseline due 
to smoothing ~ 14 km)

Front Width
25 km

GBAS Ground Station

Front Slope
400 mm/km LGF IPP Speed 

200 m/s

Stationary Ionosphere Front Scenario: 
Ionosphere front and IPP of ground station IPP move with same velocity.
Maximum Range Error at DH:  425 mm/km × 20 km  =  8.5 meters

Max. ~ 6 km 
at DH
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CONUS Ionospheric Anomaly
November 20, 2003



Summary of Current Ionosphere Threat Model Parameter 
Bounds (Revised)

(*) Max. error constrains possible slope/width combinations
(†) Max. gradient is linearly interpolated between 15 and 65o elevation angles
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25 – 200
km
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High   elevation
(≥ 65°)

25 m30 – 125
mm/km

25 – 200
km

0 – 90
m/s

Low    elevation
(< 15°)

Max. ErrorSlope
(slant)

Width SpeedElevation
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Moving Ionosphere Delay Feature in Ohio/Michigan 
Region on 20 Nov. 2003
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Ionosphere Depletion 10/08/2003
WAAS Geo (122) as Observed by the LTP
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Ionosphere Depletion 10/08/2003
WAAS Geo (122) and PRN 11 as Observed by the LTP
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Ionosphere Depletion 10/08/2003
WAAS Geo (122) as Observed by the LTP
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Final (Simplified) LAAS CAT I Ionosphere Anomaly 
Threat Model for CONUS

(note:  plot 
not precisely 

to scale)
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Mitigation of Ionosphere Anomaly Risk

• Since the “worst-case” ionosphere anomaly cannot be 
detected by ground facility CCD monitoring, the ground 
facility must inflate broadcast integrity parameters to 
eliminate user subset geometries that would be unsafe 
(by a revised definition vert. error < 28 m at 200’ DH).

• Honeywell system achieves this by inflating appropriate 
broadcast parameters

• Stanford validated a parallel approach which achieves 
this by targeted inflation of σpr_gnd and ephemeris P-
values on a per-satellite basis (in VDB Message Type 1).

• The result of either method is lower CAT I user 
availability, but availability at most airports still exceeds 
0.99 with all satellites healthy.
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Stanford P-Value Inflation Results at Memphis 
Airport (RTCA 24-SV Constellation)
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Stanford VPL Inflation Results at Memphis 
Airport (RTCA 24-SV Constellation)
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Availability Estimates for 10 CONUS Airports 
Using Honeywell Methodology
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Issues

• Anomalous ionospheric threat, when applied to the 
DCPS user, results in large position errors that are 
difficult to bound with the current definition of the 
protection levels
– There is no bound on the allowable geometries for the DCPS 

users
• Precision approach users must apply a protection level check

– There is no required airborne check for ionospheric anomalies, 
and since they are unobservable to the GBAS, the safety case 
must assume that the user will experience the error

– There is only one set of integrity parameters, and inflation 
required to protect users at 60nmi would impact PA users
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Ionosphere Summary

• Safety case for CAT I Precision Approach 
mode is complete

• DCPS safety case has been put together 
based on the current standards and models, 
and at this point would impact PA 
availability if implemented for all DCPS 
users

• Current activity at ICAO and RTCA on Dmax
and CAT II/III standards may provide relief
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Summary

• Completion of the HMI report is now the 
priority within the LAAS Integrity Panel
– Completion target date June 2, 2008

• Several issues have been identified, and are 
being addressed by the tiger teams

• Some tasks require additional analysis, but 
these are not expected to change the final 
design details and the report is expected on 
schedule
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Backup Slides

• Other Tiger Team Issues
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Ephemeris Monitoring

• Ephemeris data received from each satellite 
provides information needed to compute the 
satellites position

• Two failure modes are associated with this data
– Type B faults are due to data failures, either by malfunction or

failure of the satellite, or by control segment blunder
• Data consistency checks are capable of detecting most of these 

failures
– Type A faults are errors associated with movement of the 

satellite and include un-annunciated movement of the satellite 
(A2) and data failures immediately following a maneuver (A1)

• Maneuvers that occur out of view of the GBAS are 
problematic for data consistency tests, and must 
be accounted for in the safety analysis
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Ephemeris Monitoring

• Ephemeris A2 failures were considered sufficiently 
improbable to disregard for CAT I GBAS
– An A2 failure is an un-annunciated movement of a satellite

• On April 10, 2007, PRN 18 was repositioned by the 
GPS space segment without indicating bad health 
status
– The movement was properly annunciated by a NANU

• Complete details were published in the GPS PAN 
report #58, July 2007
– www.nstb.gps.tc.faa.gov
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Ephemeris Monitoring
Observed GPS SPS Errors
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Ephemeris Monitoring
Mitigation

• Several new tests were added to the design 
that can be used to detect satellite 
displacement errors
– The tests address the observed case without relying 

on monitoring NANUs
– Also addresses problematic corner cases of the 

ephemeris B and A1 mitigations that were 
uncovered in the HMI analysis

– Final simulations are being performed to show that 
all data failures following a maneuver can be 
detected

• Including maneuvers out of view of the GBAS
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Signal Deformation Monitoring and 
Natural Biases
• Satellite signals can be distorted by failures such 

that differential corrections will have errors for 
some set of users

• Natural (nominal, non-faulted) deformations exist
– The airborne user design space is limited, any difference 

between the ground receiver and the user receiver 
implementation will cause errors that must be bounded

– Natural bias errors must be bounded by σpr_gnd
• Already one of the existing error sources in the PSP error table
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Signal Deformation Monitor Threats

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

chips

Threat Model A
Nominal C/A   

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

chips

N
or

m
al

iz
ed

 A
m

pl
itu

de Threat Model A
Nominal C/A   

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

chips

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

chips

N
or

m
al

iz
ed

 A
m

pl
itu

de Threat Model B
Nominal C/A   

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

chips
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

chips

N
or

m
al

iz
ed

 A
m

pl
itu

de Threat Model C
Nominal C/A   



55

3.2 7.2 11.2 15.2 19.2 23.2 27.2 31.2 35.2 39.2 43.2 47.2 51.2 55.2 59.2 63.2 67.2 71.2 75.2

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Block II Block IIA Block IIR

02  19   17   15   23   25   27    01   22   31   09    03   13 11  20    28   14   18    16

Es
tim

at
ed

 Δ
(n

s)

PRN (In chronological order of launch date, within each group, oldest to newest)

Nominal Signal Deformation (Digital Only) - Data
Estimates of C/A code Δ Sorted by SV Block Type (II, IIA, IIR)

Current ranging codes may 
have up to ±10ns of 
modeled digital distortion.

~4.5ns on
PRN14

Courtesy: A. Mitelman



56 56Federal Aviation
Administration

LAAS HMI Analysis
04/16/2008

SDM Natural Bias Actions

• Satellites introduced into the constellation must be 
evaluated against the natural bias level protected 
by σpr_gnd
– Relationship between SDM test statistic biases and user errors is 

being more precisely simulated

• Satellites with excessive natural bias must be 
additionally inflated or excluded
– An additional test was added to the design to monitor the 

natural bias levels and perform this exclusion
• Details of a bias-monitoring test statistic and 

implementation are being completed by the tiger 
team
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Sigma Pseudorange Ground

• All GBAS measurement errors have been 
characterized by magnitude, type, time constant, 
and potential for correlation
– These must be represented in σpr_gnd

• Several errors are/can be bias-like over the duration 
of an approach

• Primary issue is the validation of the Honeywell-
developed semi-statistical overbounding 
methodology which combine bias-like terms and 
noise-like terms into the required overbounding 
sigma
– The validation approach uses a Monte Carlo simulation using 

selected geometries and bias error magnitudes
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Reference Receiver Antenna 
Development
• Pseudorange measurement errors at the reference 

antennas are a significant portion of the errors 
present

• The FAA funded the development of a single-port 
L1/L2/L5 Right Hand Circularly polarized (RHCP) 
Multipath Limiting Antenna (MLA) aimed at 
reducing siting constraints and eliminating 
required bias calibration

• Ten antennas have been procured and were tested 
to evaluate production builds and are being used to 
update siting criteria
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BAE ARL-1900 Production Antenna
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Antenna Performance Comparison
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Antenna Siting Constraint Update 
Testing
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Antenna Siting Constraint Update 
Testing
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Antenna Performance Comparison

• Both MLA designs have acceptable integrity 
performance
– Errors can be represented in σpr_gnd

– New design has smaller error allocations
– RHCP design also provides additional siting 

flexibility
• PSP in Memphis will be upgraded with the 

new antenna design
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Tropospheric Error Bounding

• A parameterized version of the LAAS 
tropospheric model was developed to 
explore the magnitude of range-domain 
model error
– Investigation of the most significant troposphere 

parameters and range of observed values in 
underway

– Characterization of expected errors due to 
differences in the observed weather at the LAAS 
and user locations
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Tropospheric Parameters

• Areas of Responsibility
– Determine nominal and maximum observed 

variation of temperature and humidity at selected 
locations

• Use the model to simulate maximum expected LAAS errors
– Determine values for tropospheric parameters which 

provide integrity for all users 
• Verify with data collection and simulation

– Gather additional verification data from available 
public sources

• Requires historical observations of the region’s weather 
activity


