

# Making the World A better place to live

SFO August 2016

# Facts about consumption (B777)

# Facts about consumption (B777)

APU 3.9<sub>Kg Fuel</sub> 12.3<sub>Kg CO2</sub> per min Ground 23.3<sub>Kg Fuel</sub> 73.4<sub>Kg CO2</sub> per min Flight 113.3<sub>Kg Fuel</sub> 356.9<sub>Kg CO2</sub> per min

## Count Seconds, not minutes

#### Minimum Time Track (MTT) vs Minimum Cost Track (MCT)

- Minimum Time Track (MTT) Taking advantage of the winds at best Efficient Speed.
- Minimum Cost Track (MCT) Least Cost track considering time cost, fuel cost and overflight charges
- Minimum Fuel Track (MFT) Normally the same or similar to the Minimum Flight Time, minimum fuel considering the Best Efficient speed.

### Cost Index concept

## Cost Index Cost Time : Fuel Cost

#### **B757-200 Cost Index \$ Difference**

- Above Cl250 minutes of gain reduce to about 1 minute of time gain but at a significant increase in fuel cost
- Usually is not worth it flying that fast – no return on the fuel investment.



#### Minimum Time Track (MTT) vs Minimum Cost Track (MCT) concept

| ROUTE    | MFT/R  | MCT/R  | MTT/R  |
|----------|--------|--------|--------|
| OFP NO   | 7      | 8      | 9      |
| FIN NO   | 327    | 327    | 327    |
| FLT TIME | 07:56  | 08:03  | 07:56  |
| ETA      | 17:07  | 17:14  | 17:07  |
| CRUISE   | CI45   | CI45   | CI45   |
| SAVINGS  |        |        |        |
| COSTS    | 24152  | 23228  | 24152  |
| BURN OFF | 84591  | 86012  | 84591  |
| ALTN     | KPBI   | KPBI   | KPBI   |
| ALTNFUEL | 3255   | 3255   | 3255   |
| RESERVE  | 48     | 48     | 48     |
| CONT     |        |        |        |
| ADD FUEL |        |        |        |
| T/O FUEL | 99526  | 101059 | 99526  |
| EXTRA    |        |        |        |
| TTL FUEL | 100496 | 102029 | 100496 |
| LOAD     | 100000 | 100000 | 100000 |
| MALTOW   | 408000 | 390741 | 408000 |
| PLNTOW   | 380526 | 382059 | 380526 |
| MALLW    | 326000 | 326000 | 326000 |
| PLNLW    | 295935 | 296047 | 295935 |
| MAXZFW   | 312300 | 312300 | 312300 |
| PLNZFW   | 281000 | 281000 | 281000 |
| ESTZFW   | 281000 | 281000 | 281000 |
| DIST     | 3521   | 3602   | 3521   |
| AVG WC   | M010   | м006   | M010   |
| MAX FL   |        |        |        |



## Pushback & Taxi-Out

- Aircraft ready on-time and according to a CDM plan to reduce APU & Engine use
- Coordinated surface movement between cockpit, ground personnel and ATC.
- From pushback to the runway, ATC "keeps traffic moving" allowing a better power management
- A-CDM plan shortest route to runway, in some cases take advantage of the dominant turns for the Engine Out selection
- Use taxi out time statistics e.g. based on the day of the week, last 3 months, to review the flight plan and/or inform pilot



#### APU & Engine on Ground

- APU costs several times more than ground power
- On a taxi time of 10 min we can use one engine during 5 min
- Coordination between all parts allow a better power management

# Approaching the Runway

- ↗ ATC updates on take-off sequence to:
  - Allow pilots to complete pre-take off tasks reducing runway occupancy
  - In case of Engine Out Taxi Out calculate and even coordinate start-up/warm-up time
- Better traffic sequencing and RECAT can also reduce ground time if available
- Rolling take-off avoids or eliminates intermediate stop reducing runway occupancy time and hold periods
- Intersection take-offs when performance permits
- Runway direction linked to flight route



#### **Runway Selection**

- Savings per movement also improves overall airport throughput
- Each minute of flight in the 'wrongdirection' equals roughly to 9 minutes of taxi fuel burn

## Take-Off

- Use minimum Reduced Acceleration Altitude when no regulatory restrictions exist
- Min clean speed if route more than 90 degrees
- Optimum FMS climb-out speed based on Cost Index after meeting low altitude regulatory speeds
- Day/Night rule set can allow significant savings and manage the noise at some time
- Once aircrafts are getting quieter it will be important to trial each aircraft type to apply restriction only when necessary





#### The Need for speed

- Fuel consumption at take-off and missed approach is about three times higher than in arrival
- Reduced Flaps is usually a quick win initiative with high potential

## Avoiding steps during climb



## EnRoute

- After 4 hours, this aircraft is 24,000kg lighter and should climb to a higher optimum altitude
- ↗ If the flight plan is optimized and updated, <u>use Flight Plan levels</u>
- Challenge the coordination between sectors to achieve the pretended optimized level
- Use optimized speed based on Cost Index
- Update temperature and winds on the FMS for more accurate Cost Index speed and level



#### **Optimum altitudes**

- Flying 4000ft below optimum can increase the fuel burn ~350kg per hour
- Reducing Cost Index when ahead of schedule can additional fuel

# Flight Level Flexibility





Allowing traffic to fly the optimized altitude

# Potential savings calculation Case Study

| MD11 Fuel plan (lbs) / (fit time) |                              | Ops  | Unrestricted FL |                 |                    |                       |               | Capped until: (MKJK FIR)      |          |                       |               |                               |                       |          |
|-----------------------------------|------------------------------|------|-----------------|-----------------|--------------------|-----------------------|---------------|-------------------------------|----------|-----------------------|---------------|-------------------------------|-----------------------|----------|
|                                   |                              |      | FL340           |                 |                    |                       | FL320         |                               |          |                       | FL300         |                               |                       |          |
| VCP-MEM (Optimized route)         |                              |      | Fuel<br>(lbs)   | Flt<br>(hrs:mir | Time<br>ns / mins) | Fuel burn<br>(lbs/hr) | Fuel<br>(Ibs) | Flt Time<br>(hrs:mins / mins) |          | Fuel burn<br>(Ibs/hr) | Fuel<br>(Ibs) | Flt Time<br>(hrs:mins / mins) | Fuel burn<br>(lbs/hr) |          |
| Q                                 | QTR1 (Capped until DIBOK) 60 |      | 207,71          | 9 09:16 / 556   |                    | 22,416                | 207,823       | 09:15 / 555                   |          | 22,467                | 208,431       | 09:14 / 554                   | 22,574                |          |
| B764 Fuel plan (lbs) / (flt time  |                              | time | Ops             | Unrestricted FL |                    |                       |               | Capped until: (MKJK FIR)      |          |                       |               |                               |                       |          |
|                                   |                              | umej |                 | FL320           |                    |                       | FL300         |                               |          | FL28                  |               | FL280                         |                       |          |
|                                   | GRU-ATL (Optimized route)    |      | Fuel            | Flt Time        |                    | Fuel burn             | Fuel          |                               | Flt Time | Fuel bur              | n Fuel        | Flt Time                      | Fuel burn             |          |
|                                   |                              | ute) |                 | (lbs)           | (hrs:mins / mins)  |                       | (lbs/hr)      | (lbs)                         | (hrs     | :mins / mins          | (lbs/hr)      | (lbs)                         | (hrs:mins / mins)     | (lbs/hr) |
|                                   | QTR1 (Capped until DIB       | IOK) | 82              | 112,628         | 9:13               | / 553                 | 12,220        | 114,128                       |          | 9:11/551              | 12,427        | 115,828                       | 9:14 / 554            | 12,545   |
|                                   | QTR2 (Capped until DIB       | IOK) | 5               | 112,908         | 9:12               | / 552                 | 12,272        | 113,732                       |          | 9:10/550              | 12,407        | 115,132                       | 9:11 / 551            | 12,537   |
|                                   | QTR3 (Capped until DIB       | IOK) | 5               | 109,860         | 8:59               | / 539                 | 12,229        | 110,859                       |          | 8:58 / 538            | 12,363        | 112,559                       | 8:59 / 539            | 12,530   |
|                                   | QTR4 (Capped until DIB       | IOK) | 57              | 112,841         | 9:13               | / 553                 | 12,243        | 113,641                       |          | 9:10/550              | 12,397        | 115,140                       | 9:12 / 552            | 12,515   |
|                                   |                              |      |                 |                 |                    |                       |               |                               |          |                       |               |                               |                       |          |
|                                   |                              |      |                 |                 |                    |                       |               |                               |          |                       |               |                               |                       |          |
|                                   |                              |      |                 |                 |                    |                       |               |                               |          |                       |               |                               |                       |          |

- 3 airlines contributing to this study
- Aiming 1000 flights for an year period with B767 / B777
- ↗ 3 routes from Brazil to USA

# Savings per annum in Fuel Kg and CO2 Ton

- South to North capping FL 320 at DIBOK / ANU
- 7 609 Ton | 1,918 Ton CO2 | Year
- → Brazil (VCP / GRU / GIG) to US (MEM / ATL / JFK)





# Capping up to DIBOK and ANADA

PUERTO RICO

ANADA

ANU

HAITI

DOMINICAN REPUBLIC

VESIRO

### Savings calculation methodology - lateral

| Define city<br>pairs to<br>optimize | Belo<br>use<br>Beyo<br>use | ow 10<br>e track<br>ond 10<br>e airlin | 00NM<br>miles<br>000NN<br>e data | /                      | Airlin<br>pro<br>optima<br>base<br>seasor | nes to<br>vide<br>I routes<br>ed on<br>n winds | i | After<br>implementing<br>track how<br>many flights<br>used optimal<br>route |  |
|-------------------------------------|----------------------------|----------------------------------------|----------------------------------|------------------------|-------------------------------------------|------------------------------------------------|---|-----------------------------------------------------------------------------|--|
| Flight<br>113.3Kg Fuel              | JFK-GRU<br>JFK-GRU         | Airline A<br>Airline B                 | JFK-<br>B777<br>A330             | -GRU<br>3 min<br>4 min | 530 Kg<br>480 Kg                          | 1670 CO2<br>1512 CO2                           |   | Calculate:                                                                  |  |
| 356.9Kg CO2                         |                            |                                        | PUTAR<br>SENSO<br>MAGTA<br>ATIGA |                        |                                           |                                                |   | Vlin saved                                                                  |  |

OFP: 9

per

min

CO2 saved

### Long term goals & High level Roadmap



The graphic you see here illustrates three different DES paths. The green path (A-B-D) is a fuel OPT DES path at IDLE thrust at Current Optimum CI. It is started at FMC calculated T/D and ends up at 3000 ft at the correct APR position.

#### FMS optimized descend profile

- The FMS will calculate the Top of Descend (TOD) as a function of the Cost Index
- On this case, up to 77kg burn difference when optimized profile is not flown, winds must be loaded on FMS

Number R/T can mean vectoring or level-off, Track R/T number and level off per a/c type

## Calculate: CO2 saved

### **Descend - Continuous Descent Operations**

# Level-offs use 4 to 5 times more fuel than an idle descent!



#### **FMS Energy Management**

- The FMS is continuously working toward the next altitude and/or speed restriction
- During descent and approach, use speeds that are most efficient based on the mission Cost Index as possible
- FMS is continuously trading speed for altitude or vice versa as required. Energy management and trade off should always be kept in mind



### **Descend - Continuous Descent Operations**

- Continuous Descent Operation:
  - ATC clearance to descend at Pilot's Discretion
  - → FMS / Flight Idle to incorporate:
    - Cost Index Speed
    - Rate of descent
    - Accurate time predictions at gate

#### RNAV / RNP Approach

- More direct approach reducing time and track miles
- Reduced fuel burn, emissions and less noise
- → Fewer WX diversions

#### Continuous descent /approach can result in:

Continuous Descent Arrival (Idle Thrust

Integrated With RNP Approach

↗ Saving 1 min per flight means 30kg-156K tons CO2 / 40% less noise

GREEN RNP

THRUST

Reduced Track Mile Distance

**Today's Vectored** 

tep Down Approach to IL

THRUSI

ess Fuel Consumed

RECAT and Time Base Separation increase capacity and increases efficiency

### **ATFM best practices**

- Timely communication to stakeholders before and during disruption or services
  - ↗ Airlines
  - → Airports
  - Other ATS or ATFM units
  - An option could be to use ITOP (IATA's "one stop shop" for tactical CDM) that could be used by all ATCs supervisors or FMPs/FMUs to share information.



### Efficiency of the system is the clue



#### How?

- ↗ Predictability
- Collaborative
  Decision Making
  (CMD) between
  stakeholders
- Measure the ATM system and improve what is necessary according to the expected demand



# THANK YOU

# QUESTIONS?

