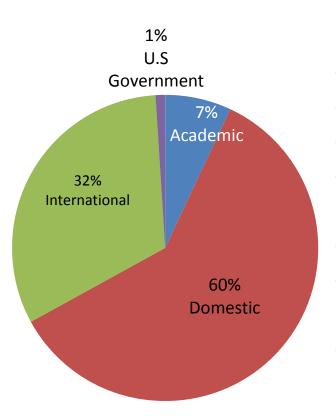


A Partnership for Progress in Mexico



RTCA:

A Unique Public-Private Partnership

Founded in 1935 Incorporated in 1991

~ 500 Member Organizations

- Academia
- Airports
- Aviation Service Providers & Regulators
- Government Organizations
 - FAA, DOD, TSA, NASA
- Manufacturers (OEMs and After-Market)
- Operators
 - Airlines, GA, Cargo, DOD
- Suppliers
 - Automation, Infrastructure, Avionics
- Labor
 - Pilots, Controllers, Dispatchers
- R&D Organizations

Goals of Project

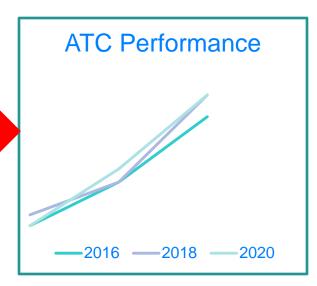
OUTPUT

Implementation

OUTCOMES

Report: RTCA – Mexico Project:

WHAT and HOW Report


Mexico Detailed ATM
Modernization
Implementation Plan
Components:
2017-2020

- Modernization Priorities
- Milestones for Government and Industry
- Identification of all critical components and challenges
- Risk Mitigation Strategies
- Commitments

DGAC/SENEAM

Program Management

Capabilities Implementation and Deployment

- Increased Capacity
- Increased Safety
- Enhanced Environment
- Increased Traffic to Region

Globally Harmonized Locally Tailored

- Requisite Levels Safety and Efficiency
- Seamless Global Air Transportation System
- Timely, Positive Return on Investments

RTCA Consensus Process Designed to:

- Adapt solutions to local needs
- Facilitate harmonization
- Encourage innovation
- Expand marketplace of Solutions

Mexico Modernization Project

- Build on Work Already Done by DGAC & SENEAM
 - Plan de Implementación de Navegación Basada en la Performance (PBN) en el Espacio Aeréo de México
 - NAM/CAR Regional Performance-Based Air Navigation Implementation Plan
 - Port of Spain Declaration
 - Based on ICAO ASBUs
- What's New:
 - Leverage RTCA Consensus Process
 - Government and Industry Participation
 - Operational Capability-driven
 - Beyond technology to all components required

Leveraging Lessons Learned

- NextGen Began as Technology-driven Transformation
- Influenced by Operators, RTCA TF5 Introduced:
 - Operational Capability more than technology
 - Need to close business case
 - Address all components necessary to deliver benefits
 - Stepwise introduction of capabilities
- FAA Plans Embraced TF5 Input
- "Ops Capabilities" Instantiated in ASBUs
- Investment by ANSP, Regulators & Operators

Deploy "Capabilities" not Technology

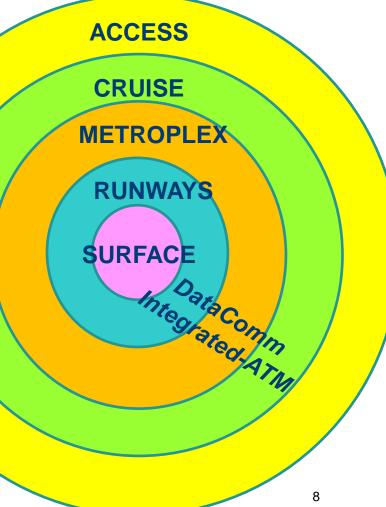
TECHNOLOGY	CAPABILITY/BENEFITS
DataComm Network	 ▲ Efficient weather reroutes ▲ Safety ▲ Efficiency ▲ Productivity
Published PBN routes	▲ Efficient routings
CPDLC in ATC Sys	 Safety, Efficiency, Productivity
RNP/PBN Routes	De-conflict traffic to/from Airports ▲ Efficiency, ▼ Environment Impact
ADS-B Infrastructure	→ A/C separation, → Capacity→ Efficient Merging & Spacing

US NextGen TF Output:

Improve Operations Where Biggest Problems Exist

Enhance Access to the NAS

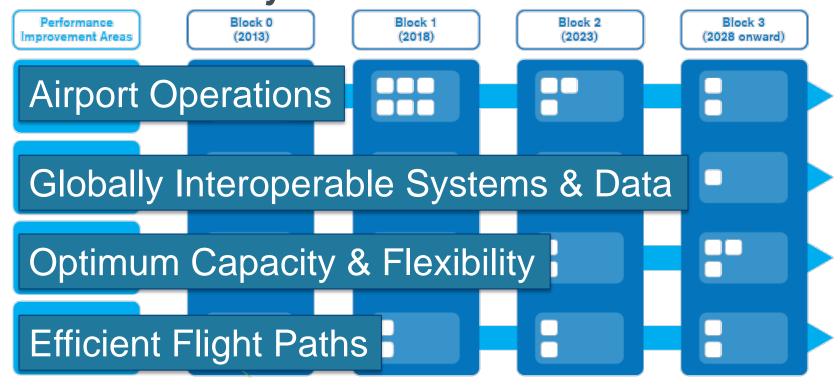
De-conflict Operations at Metroplex Airports


Improve Cruise Efficiency

Improve Surface Operations

- Leverage Current Equipage
- Close Business Case
- Document Commitments

 Plan, Execute & Track Collaboratively Increase Access to Closely-Spaced Runways



Source: ICAO Briefing

Global Air Navigation Plan (GANP)

Objectives and Priorities

PRIORITIES

PERFORMANCE BASED NAVIGATION (PBN)

CONTINUOUS DESCENT AND CLIMB OPERATIONS (CDO/CCO)

COLLABORATIVE DECISION-MAKING (CDM & A-CDM) & ATFM

Prerequisites for Delivering Benefits

Must address the following elements of each capability:

- Change in roles
- Equipage
- Decision Support Tools
- Policies
- Airspace
- Training
- Automation
- Standards
- Ops Approval; Certification
- ❖ Political Risk
- Environmental Issues

For:

- **❖**Pilots
- Controllers
- *****ATC
- **❖**TFM
- *****AOC/FOC

The result becomes basis of integrated implementation plan

Task Force Approach *Tailored Solutions

- Your Input Needed to Tailor Solution to Local Needs
- Tools & Information Intended to Aid Experts
- Dashboard & Tools Capture and Display
- Enable Sensitivity Analysis
- Dashboard & Tools Steer Toward Answers
- RTCA Known for Signature Consensus Process
- Starting Point to Help You Prioritize and Make Sound Investments to Meet Your Goals

Setting Your Priorities

GOALS	FOR	CAND	CAPARII	ITIES
GUALO		GAIN	VAI ADIL	

ACCESS / EQUITY

COST

FLEXIBILITY

PREDICTABILITY

INTEROPERABILITY

SAFETY

ENVIRONMENT / NOISE

EFFICIENCY

CAPACITY

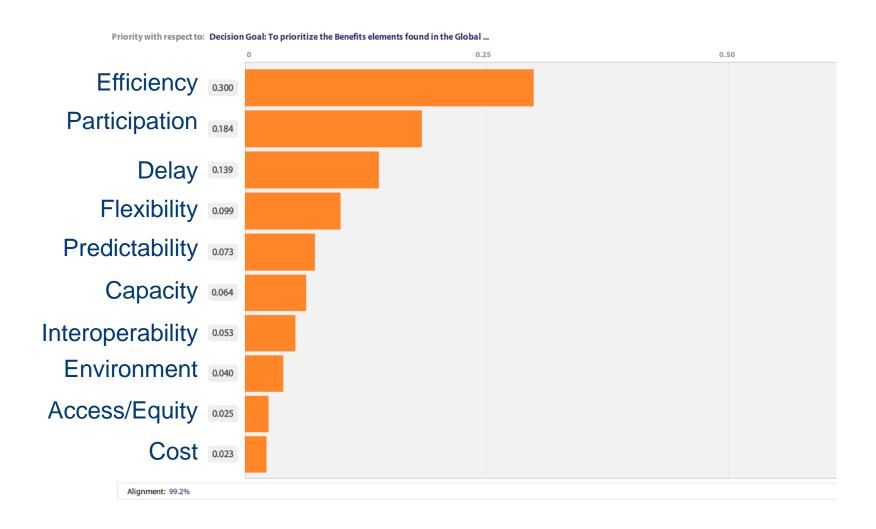
DELAY

Defining What is Most Important Example

With respect to ASBU module implementation, which is more important?

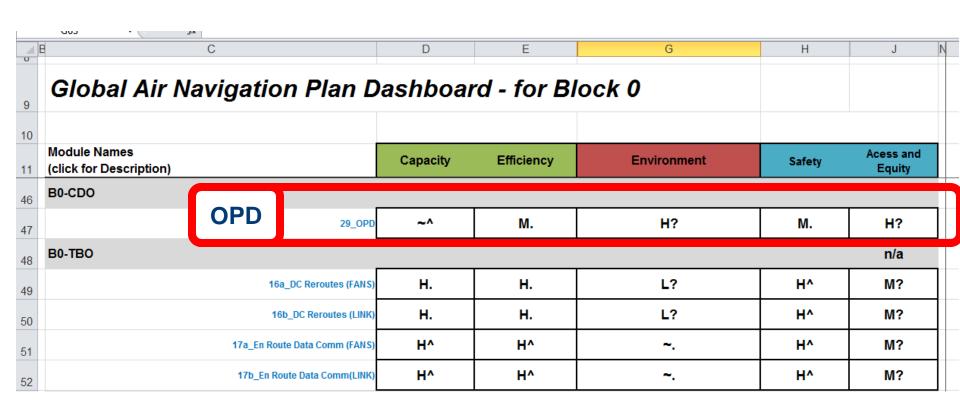
Access and Equity

OR


Cost

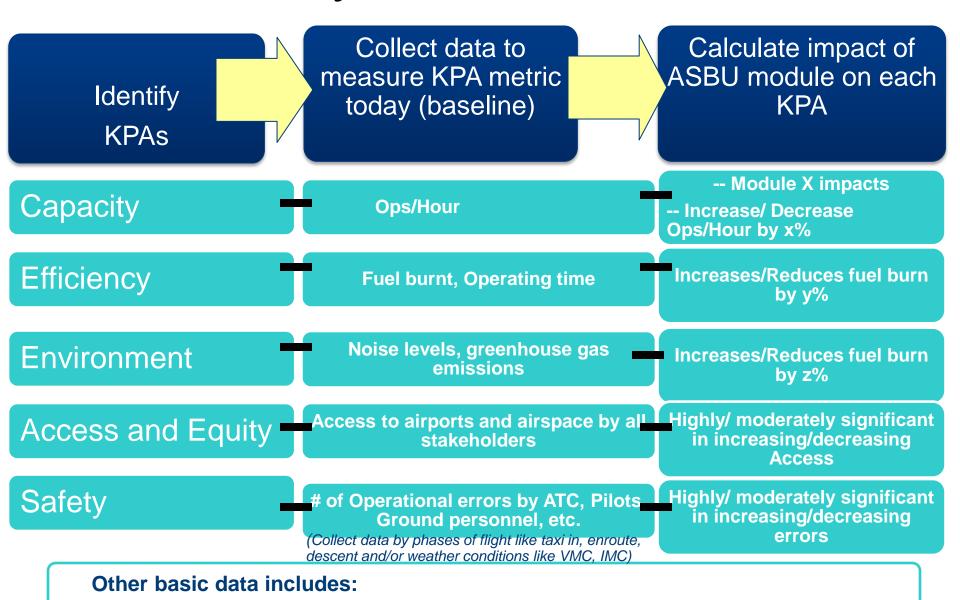
Ex	ktreme	Ve	ery Str	ong	Мо	derate	e E	qual	Mod	derate	Ve	ry Str	ong	Extr	eme
Average	8	7	6	5	4	3	2	1	2	3	4	5	6	7	
Person A	8	7	6	5	4	3	2	1	2	3	4	5	6	7	
Person B	8	7	6	5	4	3	2	1	2	3	4	5	6	7	
Person C	8	7	6	5	4	3	2	1	2	3	4	5	6	7	
Person D	8	7	6	5	4	3	2	1	2	3	4	5	6	7	
~~~	8	7	6	5	4	3	2	1	2	3	4	5	6	7	
Person X	8	7	6	5	4	3	2	1	2	3	4	5	6	7	

Pair-wise comparisons of decision criteria




#### Results of Sample Criteria Priorities






### Sample Dashboard





## RTCA Identify and collect data



Fleet types and counts; Current aircraft equipage: CNS; Airports/runways configuration; Traffic: aircraft and passenger, airports & key city pair flows







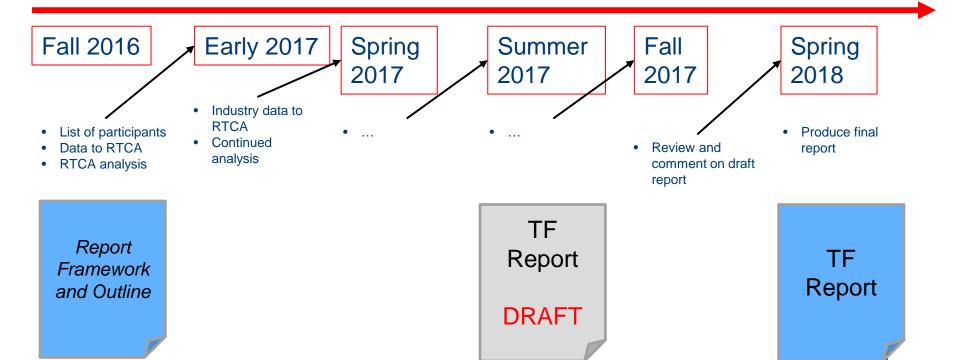


#### Stakeholders

Stakeholo	ler Groups			
Academic	Dispatchers			
Airframers	General Aviation			
Airlines	ICAO			
Airports	Military			
ANSPs	Other			
Associations	Pilots			
Aviation Information	Regional Aviation			
Business Aviation	Regulatory Organizations			
Comm Providers	Standards			
Consultants	Training			
Controllers	Weather			



#### Next Steps


- Finalize USTDA Proposal & Gain Official Interest of Mexico for Project
- Review Mexico's Local Plans & Inputs
- Identify biggest challenges for Region
- Framework of Final Product
- Update Mapping of ASBU B0/B1 Modules to critical elements to ensure benefits
- Identify stakeholders and solicit TF participation
- Identify data needs; Commitment to supply
- Schedule and Resources



## TF Steps – From Launch to Plan

- Kickoff
- Review inputs and assumptions
- Report framework
- · Stakeholders on TF
- Data needs, commitments to supply
- Agree on target date for harmonized systems (2020?)

- Kickoff with industry
- Validate SAM PBIP; update as necessary
- Data needs from industry
- Agree on performance metrics
- Identify challenges, elements
- Identify locations and capabilities
- Continue filling in elements
- Review draft report
- Review all comments and suggested resolutions





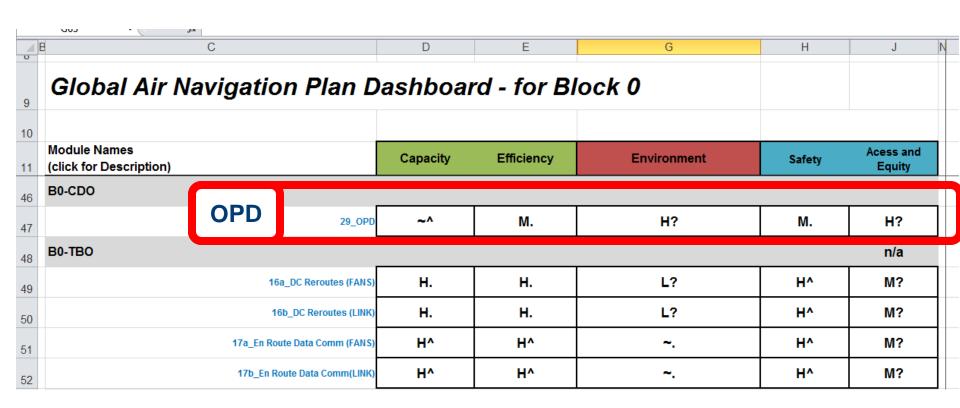
### **BACKUP**



### Beyond Single FIR

- Seamless Air Transportation
  - (CNS) Aircraft equipage applicable everywhere
  - Procedures
  - ATC, TFM, CDM automation & decision support tools
- Commonality Across Airports
  - e.g., PBN, OPDs
- Interoperable Flight Plans
  - SWIM




### How did 300 People Reach Consensus?

- Everyone's Voice was Heard
- Everyone Agreed on Evaluation Criteria
- Relative Value of All Candidate Capabilities
   Assessed Using Data-driven Dashboard "Tool"
- Expert Opinion Considered as Necessary
- Not Everyone Got Everything They Wanted

350 people from 140 organizations identified over 120 possible capabilities, through a consensus process reduced that to a list of 28 capabilities at specific locations and dates, and produced a report



### Sample Dashboard





# xample Dashboard Navigation: Optimal Profile Descents

NextGen Dashboard - for Mid-Term Implementation (9/8/09)									
Capabili (click for Desci	ity Name	Timeframe	Benefit	Readiness	Implementation Risk Resolution	Consideration	Assessment Confidence		
27_Non-radar GO	)MEX	2012-2020	<b>H</b> ^	M^	M.	M.	Medium		
20 Non rodor Lo	w Altituda	2010-2019	ЦΛ	1.^	1.0		High		
29_OPD		2010-2012	M.	M^	M.	M^	Medium		
O_> NOUICS		2012-2013	п"	IVI	п"	IVI	nıgn		
32a_RNAV RNP S	SID & STAR (RNAV only)	2010-2012	H?	M^	M^	M^	Low		





## RTC... THE GOLD STANDARD FOR AVIATION SINCE 1935

#### Dashboard Navigation:



# Capability Description and Link to Unique Capabilities

			E	lements Analysis:													
	Change in Roles	Technology/Equipage Required	Technology/Equipage Available?	Decision Support Tools Required	Need Policy	Need Procedures	Implementation Bandwidth	Need Airspace Changes	Standards Required?	Ops Approval Required	Cert Required	Political Risk	Links to Planning Documents	Training	Other Challenges	Environmental	Safet
Pilot/Operator	No role changes.	None	Yes		Designed for public use. LOAs should be addressed if OPD benefits are sought.	Yes		Yes depending on the profile developed and current airspace.	Yes with AC 90-100A	No		Environment al. SMS	NGIP	No			
	STAR: No. LOAs would need to be addressed to facilitate. TA: Yes. ATC will need to transmit via datalink. Training in the software would be needed as well.	None. Enhanced TMA operations would assist in spacing/merging prior to TOD	Yes			Yes		Yes depending on the profile developed and current airspace. LOAs should be addressed if OPD benefits are sought.	Yes with AC 90-100A	No		Environment al. SMS. LOAs should be addressed if OPD benefits are sought.	NGIP	No		LOAs should be addressed if OPD benefits are sought.	



# xample Dashboard Navigation: TATA

NextGen Dashboard - for	Mid-Te	rm Im	pleme	entation	(9/8/09)	For Legend See "Parameters" Sheet
Capability Name (click for Description)	Timeframe	Benefit	Readiness	Implementation Risk Resolution	Other Consideration Resolution	Assessment Confidence
27_Non-radar GOMEX	2012-2020	Н^	M^	M.	M.	Medium
28_Non-radar Low Altitude	2010-2018	Ην	L^	L^	M.	High
29_OPD	2010-2012	M.	M^	M.	M^	Medium
30_Q&T Routes	2012-2013	Н^	M^	Н^	M^	High
32a_RNAV RNP SID & STAR (RNAV only)	2010-2012	H?	M^	M^	M^	Low



## OPD Example: Overall Benefit Scores



<== Return to Top <==			Ope	rator				Sys	tem/\$	Socie	ety	Gen	eral	(No
Capability Name (click for Description)		<u>Benefit</u>		Capacity	Efficiency	Predictability	Operator Productivity		ANSP Productivity	Less Enviro Impact	Less Pax Delay		Access	Resource Utilization
18_En route Parallel Offsets	М.		Μ.	М.	M?	M?	?	L?	~^	~^^	L?	M?	~^	L?
19_GBAS TAP	L?		L?	L?	L?	L?	?	L?	<b>~</b>	L?	١,	L?	L?	~^
20a_GLS	¥.		¥	ź	ź	ž	?	М.	L?	ť	ž	М.	М.	?
20ab_GLS	ź		¥	ź	ž	ž	?	¥	L?	ų.	М.	Μ.	М.	?
20b_GLS	÷		÷	ź	М.	М.	?	М.	L?	i,	М.	М.	М.	?
20c_GLS	H.		Ħ.	ź	≥.	М.	?	М.	L?	1,	М.	М.	M.	?
21_Integrated Arrival/Departure Airspace (aka Big Airspace)	H^		H^	H^	H [^]	M?	?	H^	H^	M?	H^	H?	~۸	H?
22_LPV	H^		H^	ź	%	Μ?	?	М?	Ş	Nº	?	H^	Н^	~^
23_MMS FDMS, Interval Management	H^		ند	ند	L?	L?	?	H^	į.	¥	L?	L^	٧.	L?
24_MMS NT TMA RPI	_~ Λ		?	۲,	~^^	<u>۸</u>	?	2	۸,	~^^	?	>	^ر ۸	~^
25_Metering, Merging, Spacing Utilizing Required Time of Arrival (RTA)	H^		H^	ند	L?	H^	?	ŗ	i	L?	L?	Μ.	, ,	M.
26_MVMC_IMC_CAS	М.		Μ.	×.	L?	H?	?	M.	~^	ź	?	H?	~۸	~^
27_Non-radar GOMEX	H^		H^	H^	Ħ	<b>H</b> ^	?	M?	M?	~^	?	М.	М.	~^
28_Non-radar Low Altitude	Н^		H^	4^	H?	É	?	L?	Ľ?	~^^	?	H?	M?	~
29_OPD	М.		M.	۸.	М.	L?	?	H?	L?	H?	M?	М.	H?	~.
				_										





#### **OPD: Detailed Assessment Comments**

3.1.2	Efficiency		
3.1.2.1	Fuel Use	M.	(-1%-3%):
	aircraft types vary in fuel savings	from 300 - 500]	
Jiiiei eiit a			
	: NWA trials; MITRE analysis for		
Reference	: NWA trials; MITRE analysis for	PHX has also and	lyzed benefits
Reference	: NWA trials; MITRE analysis for	PHX has also and	lyzed benefits (-<.5%):
Reference	: NWA trials; MITRE analysis for	PHX has also and	lyzed benefits





### Performance Data - Capacity

- Sub-factor 1: Changes to Airport Visual Operations Throughput Ops / Hour
- Sub-factor 2: Changes to the Capacity of General Airspace Categories Ops / Hour
- Sub-factor 3: Changes to the Capacity of Congested Airspace Ops / Hour
- Sub-factor 4: Changes in Airspace Capacity during Adverse Weather Meteorological Conditions Ops / Hour
- Sub-factor 5: Changes to Airport Capacity During Adverse Meteorological Conditions Ops / Hour

Н	High Benefit	The increase in throughput is 7 to 10 percent.					
M	Medium Benefit	The increase in throughput is 4 to 7 percent.					
L	Low Benefit	The increase in throughput is 2 to 4 percent.					
~	Negligible Benefit or Not Applicable	The change in throughput is within 2 percent (i.e., (+) or (-)) 2 percent.					
N	Minor negative benefit	The reduction in throughput is 2 to 4 percent					
1	Significant negative benefit	The reduction in throughput exceeds 4 percent.					





#### Performance Data - Efficiency

- Sub-factor 1: Fuel Use Kilograms by phase of flight
- Sub-factor 2: Scheduled Block Time Length Time by phase of flight (Predictability metric)
- Sub-factor 3: Flight Operating Time Time by phase of flight
- Sub-factor 4: Taxi Operating Time Time by phase of flight

		Fuel Use	Time
Н	High	The reduction in fuel used is	The reduction in operating time is 7 to 10 percent.
п	Benefit	3 to 10 percent.	
M	Medium	The reduction in fuel used is	The reduction in operating time is 4 to 7 percent.
IVI	Benefit	1 to 3 percent.	
L	Low	The reduction in fuel used is	The reduction in operating time is 2 to 4 percent.
L	Benefit	0.3 to 1 percent.	
	Negligible	The change in fuel used is	The change in operating time is within (i.e., (+) or (-)) 2
	Benefit or	within (i.e., (+) or (-)) 0.3	percent.
~	Not	percent.	
	Applicable		
	Minor	The increase in fuel used is	The increase in operating time is 2 to 4 percent.
N	negative	0.3 to 1 percent.	
	benefit		
	Significant	The increase in fuel used	The increase in operating time exceeds 4 percent.
1	negative	exceeds 1 percent.	
	benefit		





#### Performance Data - Environment

- Sub-factor 1: Noise Population/Land exposed to over 65 DNL, Number of flights under 10000 ft
- Sub-factor 2: Greenhouse Gas Emissions Co/Co2 ton emission/phase of flight (over and under tropopause) / Operation
- Sub-factor 3: Local Criteria-Pollutant Emissions Particulate ton/year

		Noise	Greenhouse gas	<b>Pollutant Emissions</b>
			Emissions	
	High Benefit	3-10% reduction to 65	Reduction in greenhouse	A reduction in particulates
H		DNL contour areas or to	gas emissions from 3-	from +10-30%
		persons impacted	10%.	
	Medium	1-3% reduction to 65	Reduction in greenhouse	A reduction in particulates
M	Benefit	DNL contour area or to	gas emissions from 1 to	from +3-10%
		persons impacted	3%.	
L	Low Benefit			
	Negligible	+/- 0.3 % change to 65	No (or negligible)	Neutral: negligible change:
~	Benefit or	DNL contour area or to	change to greenhouse	+1-3%
	Not	persons impacted	gas emissions	
	Applicable			
	Minor	>0.3% increase to 65	An increase in	An increase in particulates
N	negative	DNL contour area or to	greenhouse gas	
	benefit	persons impacted	emissions from 0.3-1%	
	Significant		An increase in gas	
1	negative		emissions over 1%	
	benefit			



### Performance Data – Access and Equity

- Sub-factor 1: General Access to airspace or airports
- Sub-factor 2: VFR Access to Services and Airspace
- Sub-factor 3: IFR Access to Services and Airspace
- Sub-factor 4: IFR Access in Low Visibility and Ceiling Conditions
- Sub-factor 5: Equitable Allocation of Limited Service Provider Resources

ш	High Benefit		Significantly increases access for stakeholder without requiring any new airport infrastructure or
П			aircraft equipage investment.
	Medium Ben	nefit	Moderately increases access from current level for stakeholder with additional airport
M			infrastructure or aircraft equipage investment. Aircraft equipage retrofits and airport
IVI			infrastructure changes are technically, politically, and financially feasible and scaled to the level
			of anticipated benefits.
L	Low Benefit		Increases access from current level for stakeholder with additional airport infrastructure or
			feasible and retrofitable aircraft equipage investment. Aircraft equipage retrofits and airport
			infrastructure changes are technically, politically, and financially feasible.
~	Negligible B	enefit or Not	Does not reduce access from current level for stakeholder or require any new airport
	Applicable		infrastructure or aircraft equipage investment to maintain current access.
N	Minor negat	ive benefit	Requires additional aircraft equipage or additional airport infrastructure to maintain current
			access. Aircraft equipage retrofits and airport infrastructure changes are technically, politically,
			and financially feasible stakeholder receives no benefits from this equipage or infrastructure
			other than maintaining current access.
1	Significant n	egative benefit	Reduces access from current levels for stakeholder regardless of equipage. Includes cases where
			mitigating aircraft equipage may be available but not retrofitable or mitigating airport
			infrastructure changes may not be technically, politically, or financially feasible. Reduction in
			number of airports with the infrastructure to mitigate the proposed access constraints is a major
			negative.





### Performance Data – Safety

- Sub-factor 1: Reduction in Operational errors (OEs) by Ground Personnel
- Sub-factor 2: Reduction in Pilot Deviations
- Sub-factor 3: Reduction in Flight Crew—Controller Communication Errors
- Sub-factor 4: Reduction in Controller Workload
- Sub-factor 5: Reduction in Flight Crew Workload

		Errors	Workload
Н	High Benefit	Operational capability decreases the number and severity of controller operational errors by more than 4%.	Operational capability reduces the flight crew workload by more than 20%.
М	Medium Benefit	Operational capability decreases the number and severity of controller operational errors by 3%-4%.	Operational capability reduces the flight crew workload by 10% - 20%.
L	Low Benefit	Operational capability decreases the number and severity of controller operational errors by 2% - 3%.	Operational capability reduces the flight crew workload by 3% - 10%.
~	Negligible Benefit or Not Applicable	Operational capability does not improve the number or reduce the severity of controller operational errors by more than 1%.	Operational capability does not reduce the flight crew workload by more than 3%.





#### Basic Data – Other

- Fleet types and counts
- Current Aircraft equipage
  - · Communications, Navigation, Surveillance
- Airports/runways configuration
- Traffic aircraft and passenger
  - Airports
  - Key City Pair flows



### Task Force: Delivering Operational Capabilities What, Where, Who, When, Why, How (W5H)



#### www

WHAT Operational Capabilities will be implemented WHERE and by WHOM from now until 2020? Activities: List of Operational Capabilities with Who, What, Where and equipage needs specified for each operational capability. Prepare consolidated list of similar operational capabilities.

#### each operational capability. Prepare consolidated list of similar operational capabilities. **Eval Factors Bus Case Parameters Elements, Pacing Items Identify HOW to implement an** WHY should the aviation community implement an Operational Capability? **Operational Capability. Activities: Define Evaluation** Define parameters that go into Activities: Specify the elements for building business case for Factors for assessing value of Ops each Ops Cap; Define a timed Caps (Benefits, Risks, Costs); operators; evolution of capability through Define evaluation methodology 2018 **Operational Capabilities Assessment SG:** NextGen TF "Editorial Board" assesses Operational Capabilities based on W5H and determines which Operational Capabilities to include in the final plan. Activities: Take inputs from above and assign "value" for Benefit, Risk and Cost of each capability Use decision lens to gather inputs.

#### Final Prioritization, Review and Comment, Presentation, and Production

Activities: Evaluate output of above and create final prioritized list

Document equipage strategies for ops capabilities that require new equipage

Document recommendations for follow on tracking of progress toward commitments





### IATA INTERNATIONAL AIR TRANSPORT ASSOCIATION

Global trade association for the world's airlines 240 passenger and cargo carriers Meeting our members' needs 84% of global air traffic

#### KEY OBJECTIVES

Continually improve aviation safety

Increase value through artnership

Protect the interests of the industry

Reduce environment al impact