

NO COUNTRY LEFT BEHIND

Performance-based Decision-making Method

Olga De Frutos

Mexico/22 August 2016

NO COUNTRY LEFT BEHIND

"Fall in love with the **problem**, not with the solution"

NO COUNTRY LEFT BEHIND

What this method entails?

"Several procedures for meeting the expectations of the aviation community by enhancing the performance of the Air Navigation System and optimizing allocation and use of the available resources"

CAPACITY & EFFICIENCY NO COUNTRY LEFT BEHIND

Principles

- Strong focus on desired/required results
- Reliance on facts and data for decision making
- Collaborative justified decision-making

CAPACITY & EFFICIENCY NO COUNTRY LEFT BEHIND

The way to success

- Commitment
- Agreement on goals
- Organization
- Human resources and knowledge/expertise
- Data collection, processing, storage and reporting;
- Collaboration and coordination; and
- **Cost implications**

CAPACITY & EFFICIENCY

NO COUNTRY LEFT BEHIND

The Method

- STEP 1: Know your system
- STEP 2: Set of targets/ Calculation of needs
- STEP 3: Optimum solution identification
- STEP 4: Optimum solution deployment
- STEP 5: Results assessment

CAPACITY & EFFICIENCY NO COUNTRY LEFT BEHIND

- Scope
 - Avoid misunderstandings
 - → Limits of responsibility and accountability
- Context
 - Global, Regional, Local
 - Make clear assumptions on what is "surrounding" it

• Identify ambitions and expectations

- Expectation vs. ambition
- ICAO KPAs
- Global performance ambitions
 - Environment, Safety
 - Capacity, Efficiency, Predictability (GANP 2019)
- Regional performance ambitions
 - ANP Vol III
- National performance ambitions
 - Implementation
 - National Air Navigation Plans

- Operational analysis (baseline performance)
 - Data collection, process and analyse
 - Monitor current operations
 - KPIs (GANP 2016)
 - Traffic forecast

- SWOT Analysis
 - Strengths, Weaknesses, Opportunities and Threats
 - →Performance objectives

- Performance management process.
- Scope:
 - FIR, TMAs and airports in AIP.

 - Safety, capacity, efficiency, predictability and environment.

Ontext:

- Traffic growth, RPAs, airports embed in cities,
 - military activity, weather,...
- Multiple neighbors
- NACC

General ambition/expectation:

"To increase capacity along with efficiency and predictability in order to respond to future traffic growth, while ensuring that there are no adverse impacts on safety nor environment."

- Operational analysis in FIRs, TMAs and airports within AIP:
 - Performance baseline
 - KPI02, KPI13, KPI04, KPI05, KPI08, KPI16, KPI09, KPI10, KPI06, KPI11, KPI01, KPI14, KPI15
 - SWOT analysis

Airport Y:

- Scope limited to airside of the airport, including TMA. Airport terminal is out of scope.
 - Performance baseline
 - KPI02, KPI13, KPI16, KPI09, KPI10, KPI11, KPI01, KPI14, KPI15
 - Forecast
 - SWOT analysis

SWOT analysis:

0

- Strengths:
 - manpower
- Weaknesses:
 - \circ 2 runways separate 300 m → dependent operations
 - HUB operations
 - Separation on final (absolute values and application)
- Opportunities:
 - New technology and procedures
- O Threads:
 - Weather
 - Topography surrounding airport Y
 - Airport Y physical capacity restriction

STEP 2: TARGETS & NEEDS

- Agree & Prioritize performance objectives
 - Focus area within KPAs
 - \rightarrow Performance objectives
 - Prioritization

STEP 2: TARGETS & NEEDS

- **SMART** Objectives
 - Specific
 - Measurable
 - Achievable
 - -Relevant
 - -Time-bounded

STEP 2: TARGETS & NEEDS

- **SMART** Objectives
 - Specific

PERFORMANCE

- Measurable

INDICATORS \rightarrow *ICAO KPIs Catalogue*

- Achievable
- -Relevant
- -Time-bounded

NO COUNTRY LEFT BEHIND

STEP 2: TARGETS & NEEDS

- **SMART** Objectives
 - -Specific | PERFORMANCE
 - Measurable
 - Achievable
 - -Relevant
 - -Time-bounded

INDICATORS

VALUE= f(baseline)
SPEED PROGRESS

BERFORMANCE PERFORMANCE NEEDS

- Airport Y
- Focus area:
 - Capacity
 - Airport capacity
 - Runway capacity
 - Efficiency
 - Airport efficiency
 - Taxi in and out efficiency

- Airport Y
- WHAT?
 - Objective 1: to increase the airport acceptance rate while maintaining safety
 - Objective 2: to improve the efficiency of ground operations during heavy traffic time-periods, while maintaining safety and minimizing environmental impact.

- Airport Y
- Performance targets
- Specific and measurable:
 - Objective 1: KPI09, KPI11
 - Objective 2: KPI02, KPI13, KPI16

- Airport Y
- KPI09: Airport peak arrival capacity
 - For each arriving flight:
 - Actual landing time (ALDT)
 - Estimated landing time (ELDT) (from flight plan)
 - For each time interval:
 - Declared landing capacity of the airport

KPIID	KPI09	
KPI Name	Airport peak arrival capacity	
Definition	The highest number of landings an airport can accept in a one-hour time frame (also called	
	declared arrival capacity, or airport acceptance rate)	
Measurement Units	Number of landings / hour	
Variants	None	
Operations measured	The capacity declaration of an airport	
Object(s) characterized	The KPI is computed for individual airports	
Utility of the KPI	This KPI indicates the highest landing rate that an airport will accept, using the most	
	favorable runway configuration under optimum operational conditions. The runways	
	may or may not be the most constraining factor for airport capacity: at some airports	
	the most constraining factor may be the terminal airspace, the taxiways, the number of	
	gates, passenger handling capacity etc. The KPI is typically used for scheduling and	
	ATFM purposes, and to develop capacity investment plans.	
Parameters	None	
Data requirement	Scheduling parameters for slot controlled airports	
	Airport Acceptance Rates (AAR)	
Data feed providers	Airports	
Formula / algorithm	At the level of an individual airport:	
	1. Select highest value from the set of declared arrival capacities	
	2. Compute the KPI: convert the value to an hourly landing rate, if the declaration is at	
	smaller time intervals	
References & examples	Comparison of ATM-Related Operational Performance: U.S./Europe (June 2014)	
of use	CANSO Recommended KPIs for Measuring ANSP Operational Performance (2015)	

- Airport Y
- Performance targets
- Achievable, relevant and time bound
- KPI09: airport peak arrival capacity
 - *o* Baseline
 - Runway system:
 - ⊘ Declare capacity of the system runway 40 operations → Airport peak arrival capacity of the system runway: 20 arrivals/hour
 - Actual throughput: 35 operations
 - Typical busy hour demand of 50 operations
 - Two non independent runways separated by 305 m
 - Operated as a single runway (one runway for departures and one for arrivals)
 - Traffic growth forecast for the next 25 years: 8%

Airport Y

0

- KPI09: airport peak arrival capacity
 - Performance target:
 - It is decided to adopt the future typical busy hour demand as the capacity target. This
 results in:
 - 50x1.08^25=340 operations \rightarrow 170 arrivals per hour
 - The best in class airport peak arrival capacity for two dependent runways is 60 operations, thus the limit of the infrastructure capacity of the airport to accommodate the forecast demand will be reached in 3 years
 - So the performance target for a short term will be limited by the infrastructure of the runways to 60 operations. A longer term solution, such as the construction of a new airport should be considered.
 - Airport peak arrival capacity of the system runway: 60 arrivals/hour
 - Performance needs:
 - Airport peak arrival capacity of the runway system: 60-40=20 arrivals/hour

Airport Y

- ✓ KPI11: AIRPORT PEAK CAPACITY UTILIZATION
 - For each arriving flight:
 - Actual landing time (ALDT)
 - Estimated landing time (ELDT) (from flight plan)
 - For each time interval:
 - Declared landing capacity of the airport

KPI ID	KPI11
KPI Name	Airport arrival capacity utilization
Definition	Airport arrival throughput (accommodated demand) compared to arrival capacity or
	demand, whichever is lower
Measurement Units	%
Variants	Variant 1: IFR arrivals only
Operations measured	The number of unaccommodated landings at an airport
Object(s) characterized	The KPI is computed for individual airports
Utility of the KPI	This KPI assesses how effectively arrival capacity is managed by the ANSP. It is a
	measure of accommodated demand, compared to the available capacity of the airport
	irrespective of the delay incurred by arriving traffic. Seen in another way, it captures
	the "missed" arrival slots. At congested airports, the KPI relates the throughput to the
	declared capacity. At uncongested airports (or airports without declared capacity) the
	KPI relates the throughput to the unconstrained demand based on flight plans.
Parameters	Time interval at which to perform the most granular calculations. Recommended value:
	15 minutes.
Data requirement	For each arriving flight:
	 Actual landing time (ALDT)
	 Estimated landing time (ELDT) (from flight plan)
	For each time interval:
	- Declared landing capacity of the airport
Data feed providers	Airports
Formula / algorithm	For each time interval:
	1. Compute the throughput: count the number of actual landings based on ALDT
	2. Compute the demand: count the number of estimated landings based on ELDT
	3a. if demand >= capacity: utilization = throughput / capacity
	3b. if demand < capacity: utilization = throughput / demand
	At aggregated level (longer time periods):
	4. Compute the KPI: sum(utilization*demand) / sum(demand)
References & examples	CANSO Recommended KPIs for Measuring ANSP Operational Performance (2015)
of use	

- Airport Y
- KPI11: airport arrival capacity utilization
 - Baseline
 - Runway system:
 - O Declare capacity of the system runway 40 operations → Airport peak arrival capacity of the system runway: 20 arrivals/hour
 - Actual throughput: 25 operations
 - Typical busy hour demand of 50 operations
 - Two non independent runways separated by 305 m
 - Operated as a single runway (one runway for departures and one for arrivals)
 - Traffic growth forecast for the next 25 years: 8%

Airport Y

- KPI11: airport arrival capacity utilization
 - Performance target:
 - It is decided to adopt the future typical busy hour demand as the capacity target. This
 results in:
 - 50x1.08^25=340 operations \rightarrow 170 arrivals per hour
 - The best in class airport peak arrival capacity for two dependent runways is 60 operations, thus the limit of the infrastructure capacity of the airport to accommodate the forecast demand will be reached in 3 years
 - In this case, within in 3 years the capacity is expected to reach the demand and the target in this case will be set in 1, so the throughput to be equal to the demand and the capacity.
 - Airport arrival capacity utilization of the system runway: 100%
 - Performance needs:
 - Airport arrival capacity utilization of the runway system: 1-25/40=0.375= 37.5%

STEP 3: IDENTIFICATION OPT. SOLUTION

- Assessment of the SWOT analysis
 - Dominant factors:

main constraints/opportunities

 \rightarrow selection and prioritization of opportunities and issues

CAPACITY & EFFICIENCY

NO COUNTRY LEFT BEHIND

STEP 3: IDENTIFICATION OPT. SOLUTION

- List of options
 - High-level strategy
 - Operational concept
 - Technical enablers
 - Baseline
 - Availability
 - Safety Assessment
 - Human Factors Assessment
 - Assessment of expected performance

STEP 3: IDENTIFICATION OPT. SOLUTION

CAPACITY & EFFICIENCY

NO COUNTRY LEFT BEHIND

STEP 3: IDENTIFICATION OPT. SOLUTION

- Make decisions
 - Information available
 - Scope
 - Performance objectives and targets
 - Assessment of SWOT analysis
 - List of solutions (ASBUs)
 - Safety Assessment, HP Assessment, CBA and Environment Impact Assessment
 - Single optimum solution or a roadmap of optimum solutions

- Airport Y
- Airport capacity
 - KPI09: Airport Peak Arrival Capacity
 - KPI11: Airport Arrival Capacity Utilization

SWOT analysis:

0

- Strengths:
 - manpower
- Weaknesses:
 - \circ 2 runways separate 300 m → dependent operations
 - HUB operations
 - Separation on final (absolute values and application)
- Opportunities:
 - New technology and procedures
- O Threads:
 - Weather
 - Topography surrounding airport Y
 - Airport Y physical capacity restriction

STEP 3: IDENTIFICATION OPT.

* Airport Peak Arrival Capacity, the highest number of landings an airport can accept in a one-hour time frame (also called declared arrival capacity, or airport acceptance rate).

- Separation on final:
 - Ø BO WAKE:
 - RECAT
 - O BO ASEP
 - Ø VSA
- Number of runways used simultaneously
 - Ø BO WAKE
 - WIDAO
- Aircraft sequencing
 - BO RSEQ
 - AMAN

- Associated Safety Assessment
- Associated Human Factors Assessment
- Associated Environmental Impact Assessment

STEP 3: IDENTIFICATION OPT.

- Weather
 - Ø BO APTA:
 - GNSS+ BaroVNAV
- Topography
 - Ø BO FRTO
 - Airspace design based on PBN

- Associated Safety Assessment
- Associated Human Factors Assessment
- Associated Environmental Impact Assessment

CAPACITY & EFFICIENCY NO COUNTRY LEFT BEHIND

STEP 4: DEPLOYMENT OF THE SOLUTION

- Execution phase
 - Planning
 - Implementation
 - National mechanism
 for tracking the implementation
 of the elements
 - Benefits

- Enablers
- Responsible stakeholders for implementation
- Project Management
 - Monitor Progress on implementation: Mechanism for tracking implementation
- Deployment packages
 - Per element

- Continuously assess performance
- Monitor progress of implementation
- Review actually achieved performance
 - Update performance gaps
- → +(Step 1&2)=

PERFORMANCE MONITORING AND REVIEW

- Tasks in the PMR:
 - Data collection
 - Data publication
 - Data analysis
 - Formulation of conclusions; and
 - Formulation of recommendations.

- Data collection
 - Automatic Data Collection
 - Manual data reporting (electronic or paper)
- For each KPI:
 - information needs;
 - suppliers of data;
 - information disclosure by data suppliers; and
 - manage the data feeds on an ongoing basis.

- Data access and publication
 - Audience:
 - Performance specialists
 - Specific data (as much granularity as possible)
 - People with a generally high level interest in ATM performance
 - High-level performance indicator

- Data Analysis
 - Quality of the data
 - Data analysis
 - Big picture
 - Cause-effect analysis for results

 \rightarrow New performance objectives, performance indicators and data needs.

- Formulation of conclusions
 - Performance objectives
- Formulation of recommendations
 - ATM community expectations

Ø Data collection at a national level

- Report annual performance data to the PIRGs Objective: Monitor improvement performance of the system
 - Tool: ANRF/ Dashboards
 - ICAO to publish Air Navigation Report based on this data
 - ICAO to review global performance objectives base on the results
- Cycle to start again

CAPACITY & EFFICIENCY NO COUNTRY LEFT BEHIND

