

2<sup>nd</sup> Symposium on ICAO-Standard MRTDs, Biometrics and Security MRP Security Features and Privacy

Dr. Uwe Seidel Senior Scientist Bundeskriminalamt Germany Tom Kinneging Senior Project Manager Sdu Identification Netherlands

MRTD Symposium ICAO Headquarters, Montréal 6 – 7 September 2006

#### Contents

Introduction > document security basics cryptography basics Protection against data alteration data page chip contents Protection against copying data page chip contents Privacy protection > skimming eavesdropping

# Security Requirements as part of international standards

ICAO Doc 9303 Part 1 (MRPs)

5th ed. 2003, Annex to Section III

6th ed. 2006, Vol 1, Section III, Appendix 1

6th ed. 2006, Vol 2, Section III & IV

Council Regulation (EC) No 2252/2004 Standards for security features and biometrics in passports and travel documents

#### The e-MRTD: a dual document

#### Physical Document

- Data page
- > MRZ
- Physical security features

#### Digital Document

- RF-ChipMRZ and biometrics
- Digital (cryptographic) security features



# **Major Security Threats**



should be avoided and forgeries should become more easily recognisable.

Attempted falsifications should destroy the document or leave easily detectable traces.

#### Any <u>illegal issuance</u>

using authentic blanks should be avoided.

#### Physical Security Measures according to Doc 9303

- Integrating authenticity features in the <u>document</u> <u>material</u>
- Protecting the document components with security printing
- Applying <u>optically variable features</u> to thwart reproduction and copying
- Using secure issuing techniques to integrate data into the document

### Physical Security Measures Document Material

Passport paper
UV dull paper
dual tone watermark
chemical sensitizers
Optional: security threads fluorescent fibres



#### Physical Security Measures according to Doc 9303

- Integrating authenticity features in the <u>document</u> <u>material</u>
- Protecting the document components with security printing
- Applying <u>optically variable features</u> to thwart reproduction and copying
- Using secure issuing techniques to integrate data into the document

## Physical Security Measures Security Printing

Background and Text
two-colour guilloche background pattern
rainbow printing
UV fluorescent ink
security design
microprint



#### Physical Security Measures according to Doc 9303

- Integrating authenticity features in the <u>document</u> <u>material</u>
- Protecting the document components with security printing
- Applying <u>optically variable features</u> to thwart reproduction and copying
- Using secure issuing techniques to integrate data into the document

#### Physical Security Measures Copy Protection

Incorporation of OVDs
diffractive optically variable image devices (DOVID)
integrated in the laminate
or as metallised hot stamping element
or equivalent protection



#### Physical Security Measures according to Doc 9303

- Integrating authenticity features in the <u>document</u> <u>material</u>
- Protecting the document components with security printing
- Applying <u>optically variable features</u> to thwart reproduction and copying
- Using secure issuing techniques to integrate data into the document

### Physical Security Measures Secure Issuing Techniques

- Portrait and biographical data integrated in the basic material
- Secure Personalization techniques
  - electro-photographic
  - thermal transfer
  - ink jet
  - Photographic
  - laser engraving



ink jet data integration Laser engraving integration



### Digital Security Measures Basic cryptography

Hashing for integrity
Encryption for confidentiality
Signing for authenticity
Digital signature

### Digital Security Measures Basic cryptography

Hash function
Unique representation
Irreversible
Public algorithms

# Hashing for integrity



### Digital Security Measures Basic cryptography

A-symmetric encryption/decryption
Private/Public key pair
Confidentiality
Authenticity





# **Encryption for confidentiality**



## Signing for authenticity



# **Digital signature**



# **Digital signature**



### From theory into practice

Physical document security
 Detected falsifications and counterfeits

Digital security features
 Live Demonstration

# Physical: Successful protection against data alteration

# Attempted falsifications leave recognizable traces





ink jet personalization

#### laser engraving

# Digital: Successful Protection against data alteration

Attempted changes to data leave recognizable traces

Passive authentication

#### **Passive authentication (PA)**

#### LDS

Data Group 1 (MRZ)

Data Group 2 (Encoded Face)

Data Group 3 (Encoded Finger)

Data Group 4 (Encoded Iris)

Data Group 5 (Displayed Face)

Data Group 6 (Future use)

Data Group 7 - 15

Data Group 16 (Persons to notify)

Hash DG\_1

Hash DG\_2

Hash DG\_3

Hash DG\_5

**Digital Signature** 

### **Attack 1: Exchange Data Groups**

Counterfeiter manipulates digital personal data (DG1/DG2) ....

#### LDS

Data Group 1 (MRZ) - changed

Data Group 2 (Face) - changed

Data Group 3 (Encoded Finger)

Data Group 4 (Encoded Iris)

Data Group 5 (Displayed Face)

Data Group 6 (Future use)

Data Group 7 - 15

.... but leaves the SO<sub>D</sub> unchanged

SO<sub>D</sub> Hash DG\_1 - original Hash DG\_2 - original Hash DG\_3 - original Hash DG\_5 - original Digital Signature

Data Group 16 (Persons to notify)

# **Attack 1 Detected**

Passive AuthenticationWrong hash values

# Attack 2: Hash your own data

Counterfeiter manipulates digital personal data (DG1/DG2) ....

#### LDS

Data Group 1 (MRZ) - changed

Data Group 2 (Face) - changed

Data Group 3 (Finger) - changed

Data Group 4 (Encoded Iris)

Data Group 5 (Displ. Face) - changed

Data Group 6 (Future use)

Data Group 7 - 15

Data Group 16 (Persons to notify)

2<sup>nd</sup> Symposium on ICAO-Standard MRTD's, Biometrics and Security

.... and changes the hashes in the  $SO_D$  accordingly



### **Attack 2 Detected**

Passive Authentication
Digital Signature verification fails

#### **Passive Authentication**

Provides protection against data alteration, but...

only if inspection systems perform this ICAO mandatory security protocol ! Always!

The authors wish to thank K. Nguyen (Bundesdruckerei) for preparing the samples

# Physical: Successful protection against copying

# Reproduced Documents are easily reconizable by Optically Variable Devices (OVDs)







# Digital: Successful protection against data copying

A demonstration
Original chip contents
Copy
Copied contents

#### **Active authentication**

#### LDS

Data Group 1 (MRZ)

Data Group 2 (Encoded Face)

Data Group 3 (Encoded Finger)

Data Group 4 (Encoded Iris)

Data Group 5 (Displayed Face)

Data Group 6 (Future use)

Data Group 7 - 14

Data Group 15 (AA Public Key) Data Group 16 (Persons to notify)

|   | SO <sub>D</sub>   |
|---|-------------------|
|   | Hash DG_1         |
|   | Hash DG_2         |
|   | Hash DG_3         |
|   | Hash DG_5         |
| ~ | Hash DG_15        |
|   | Digital Signature |

AA Private Key

### **Active authentication**



1473**9AZ**39A2

Data Group 15 (AA Public Key)

AA Private Key

#### e-MRTD and Privacy Protection

 No problem for "non-e" MRTDs
 You can't read a closed book!
 Problems introduced by RF chips
 Skimming: Actively read out data stored on a RF chip
 Eavesdropping: passively reading along an existing communication

# **Skimming and Eavesdropping**

#### Legitimate reading device





#### e-MRTD with RF chip



# Eavesdropping

Illegal listening into an existing communication between reader and RF chip

Several meters!

reading distance 0-10 cm

#### Skimming

Illegal use of a concealed reading device, unnoticed by the document bearer

Up to a few centimeters.

# Skimming

A demonstration Skimmer

### **Basic Access Control**



Inspection system

#### **Basic Access Control**



## **Basic Access Control**

A demonstration Skimmer

# Establishing Trust in e-MRTDs

Physical Security Features
 establishing trust in the physical document

 Digital Security Features
 establishing trust in digital data
 Privacy Protecting Features
 establishing confidence in the legal and conscious
 use of personal data

# Summary

Physical and digital security measures complement each other to form a modern, machine verifiable document which can be trusted by travelers and control authorities alike.

# Thank you for your attention.

**Contact information:** 

Tom Kinneging Senior Project Manager Sdu Identification The Netherlands Tel: +31 23 7995 218 e-mail: tom.kinneging@sdu-identification.nl

Dr. Uwe Seidel Senior Scientist Bundeskriminalamt, Forensic Science Institute Germany Tel: +49 611 55 13909 e-mail: uwe.seidel04@bka.bund.de