

PUBLIC KEY INFRASTRUCTURE FOR

AIR TRAFFIC MANAGEMENT SYSTEMS

Federal Aviation Administration (FAA) William J. Hughes Technical Center (WJHTC)

Vic Patel vidyut.patel@tc.faa.gov 609-485-5046

Basic Cryptography Definitions

CRYTOGRAPHY: It allows two parties to exchange sensitive information in a secure manner via mathematical techniques

CONFIDENTIALITY: Assures the information owner that his/her information is protected

AUTHENTICATION: Assures the information owner that he/she knows with whom the he/she is doing business with

INTEGRITY: Assures the information owner that the information is not being modified or substituted,

NON-REPUDIATION: Assures the information owner that the originator cannot deny originating a message or business transaction

BASIC CRYPTOGRAPHIC TECHNIQUE

Symmetric Cryptography:

It relies on a symmetric encipherment algorithm
It is also called secret key cryptography
Single secret key to encipher and decipher
Used for Encryption or Authentication

Asymmetric Cryptography:

It is also called public key cryptography
Keys comes in pairs – public and private
Public key is available to anyone – like phone number in the phone book
Private key is kept secret by the owner

HASH function:

A mapping from an arbitrarily long input message to short (fixed-length) output

Not feasible to guess an input message that results in a given output Used for Data Integrity

ADDITIONAL DESCRIPTIONS

Certificate: A digitally signed data structure defined in the X.509 standard that binds the identity of a certificate holder (or subject) to a public key.

Certificate Authority (CA): A trusted entity that issues certificates to end entities and other CAs. CA issues CRLs periodically, and post certificate and CRLs to a repository

Certificate Revocation List (CRL): A list of revoked but unexpired certificates by a CA.

Registration Authority: A set of technical and administrative functions (e.g., enrollment) performed by a component of a CA.

CRYPTOGRAPHIC TECHNIQUE AS APPLIED TO ATN

Encryption Scheme:

A cryptographic scheme for confidentiality
It has an encryption and decryption operation
May use <u>Asymmetric Encipherment (under public key)</u>
Or alternatively may use <u>Symmetric Encipherment</u>

Digital Signature Scheme:

It is used for data origin authentication and data integrity
It has a signing and verification operations
A receiver must be able to validate the sender's signature
The sender of a signed message must not be able to repudiate it latter

<u>Asymmetric Encipherment (under private key)</u>

Hash Function

CRYPTOGRAPHIC TECHNIQUE AS APPLIED TO ATN

(cont'd)

Key Agreement Scheme:

Used for key establishment between two entities It creates a shared key for two entities

Asymmetric Encipherment (under private key)

Message Authentication Code (MAC) Scheme:

A key-dependent one-way <u>hash function</u> is called a MAC MAC is useful to protect authenticity without providing secrecy Use of hash also provides integrity
Only someone with the identical key can verify the hash

SECURITY SERVICE AND MECHANISM

SECURITY SERVICES

CONFIDENTIALITY

AUTHENTICATION, INTEGRITY, NON-REPUDIATION

KEY ESTABLISHMENT AUTHENTICATION, INTEGRITY

SECURITY MECHANISMS

Cryptographic Schemes

Encryption Scheme

Digital Signature Scheme Key Agreement Scheme Message Authentication Code Scheme

Cryptographic Building Blocks

Asymmetric Encipherment (under public key) Asymmetric Encipherment (under private key) Asymmetric Encipherment (under private key)

(Keyed) Hash Function

OR

Symmetric Encipherment

AND

Hash Function

Symmetric Cryptography

Symmetric Cryptography

"This is a secret message"

Confidential Message

Encryption

message

Encrypted

Message

"Wklv lv d vhfuw phvvdjh" Internet

 \rightarrow

Encrypted

Message

"Wklv lv d vhfuw phvvdjh" "This is a secret message"

Confidential Message

Decryption

SYMMETRIC CRYPTOGRAPHY

- Shared Symmetric key or PRIVATE KEY used
- Provides data confidentiality (or authentication)
- Fast, easy to implement in hardware, widely used
- Works well for a small group of authorized parties, where keys may be pre-distributed and challenge for a large scale environment secure distribution
- E.g., DES, AES, 3DES, IDEA

SYMMETRIC CYPTOGRAPHY

- Pro:
 - Fast, easy to implement in hardware, Widely used
- Cons:
 - Key management very difficult
 - Key must be exchanged via a trusted channel
 - Fixed length
 - Can be stolen
 - Difficult to administer

Asymmetric Cryptography

- 1 Create public / private key pairs
- 2 Exchange only public keys

ASYMMETRIC CRYPTOGRAPHY

- Use of two distinct but related keys
- Provides data confidentiality and authentication
- Works well for a small group of authorized parties, where keys may be pre-distributed and challenge for a large scale environment secure distribution
- For example RSA

ASYMMETRIC CRYPTOGRAPHY

• Pros:

- Scales easily and easy key management is possible
- Provides authentication of sender
- Variable key sizes
- Can be used for both encryption and digital signature

• Cons:

- Relatively slow
- Inefficient for encrypting lots of data
- Authentication of public keys

Asymmetric Cryptography

- (1) Create public / private key pairs
- (2) Exchange only public keys Eve intercepted and substituted Bob's Public Key

One-Way HASH Function

DATA INTEGRITY

Creating DIGITAL SIGNATURE

- 1 Create public / private key pair
- 2 Sender sends its public key to receiver

Verifying DIGITAL SIGNATURE

