

Air/Ground ATN Implementation Status

ATN Seminar, Chiang Mai - 11/14 December 2001 -

Mike Murphy
ATN Systems, Inc. (ATNSI)
703-412-2900, Mike.Murphy@atnsi.com

Presentation Overview

- An Approach to Defining CPDLC/ATN Benefits
- Air/Ground CPDLC/ATN Implementation Status
 - **♦** EUROCONTROL PETAL IIE Project
 - ◆ FAA CPDLC Programs
 - Airline/Avionics Programs
- Next Steps/Future Initiatives
 - ◆ RTCA CPDLC Benefits Activity
 - ◆ FANS 1/A Accommodation
 - Security Initiatives
- Conclusions

ATN Infrastructure Upgrade

	ACARS Infrastructure	ATN Infrastructure		
Applications	Operational, and Administrative Services and initial Air Traffic Services	Expanded Air Traffic, Operational, Administrative, and Passenger Services		
Network	ACARS	ATN		
Sub-Networks	Character Oriented	Bit Oriented		

Air/Ground ATN Infrastructure

ATN - Why Invest

- Only Alternative for <u>Strategic</u>, Common, World-Wide Data Communication
 Infrastructure Upgrade for the Aeronautical Industry
- Enables Common Systems to accommodate Air Traffic Services, Operational and Administrative Services, and Passenger Services (possibly)
- Facilitates Reduction in Development/Operational Costs
 - Creates Larger Market facilitating reduced "per unit" Pricing
 - ◆ Facilitates System Development Vendor Competition by basing Requirements on Open Standards
 - ◆ Facilitates "Real Time" Data Communication Service Provider Competition for Ground/Ground and Air/Ground Operational Services
- Supports Contract Requirements based on Required Communication Performance (RCP)
- Future Proof Enables integration of emerging "bit-oriented" Data
 Communication Subnetworks

ATN - Impact of No Investment

- Industry (CAAs and Airspace Users, Including Airlines)
 - ◆ Loss of Opportunity to Baseline System Automation Upgrades against Data Communication Infrastructure
 - Delay in Realization of Improved Air Traffic Services
 - ◆ Exposure to Non-Compliant Requirements
 - Increase in Development Costs and Operational Service Costs
 - Negative Impact on Utility of Common Systems for World-Wide Operations
 - ◆ Delay in Realization of Benefits based on User Equipage
- Airlines
 - Missed "Window of Opportunity" for Updated Avionics on New Aircraft Orders

ATN - Investment Perspective

- The Data Communication Infrastructure is a Long-Term Investment
- Industry MUST agree on a Common Data
 Communication Infrastructure Upgrade Path
- The ATN is on the Upgrade Path
- Decisions as to "When" to Equip with ATN will be based on Internal Economic Analyses

Air/Ground ATN Application Services

- Air Traffic Control (ATC) Services
 - ◆ Controller Pilot Data Link Communications (CPDLC)
 - ◆ Automatic Dependant Surveillance (ADS)
 - ◆ Flight Information Services (FIS)
 - Context Management (CMA)
- Other Potential Services
 - ◆ Aeronautical Operational Control (AOC)
 - ◆ Aeronautical Administrative Communication (AAC)
 - ◆ Aeronautical Passenger Communications (APC)

ATC Service Benefits

Operational Improvements

Service Improvements

Safety Benefits

Direct Cost Avoidance

- Increased Capacity
- Operational Efficiencies (e.g. Delay Reduction, Reduced Restrictions)

Indirect Cost Avoidance

- Improved Service
 Availability
 Operational Predictability
- Operational Predictability
- Bank Integrity

- Reduced Comm Errors
- Additional Comm Mechanisms
- Improved Information Flow

Opportunity
Cost Avoidance

Loss of access to Service Benefits because of delay in Service Implementation

First Step: Controller Communications Workload

Problem: Voice Congestion

Solution: Data Communications

Example: FAA Study

FAA Study: Reduction in Holding

Problem

Solution

FAA Study: Radio Occupation Time

Air/Ground ATN Implementation Status

Air/Ground ATN Implementation Programs

FAA CPDLC Build 2 Program and Link 2000+ Initiatives

FAA CPDLC Build 1/1A Programs

EUROCONTROL PETAL IIE Project

2001 2003 2005 2007 2009

PETAL IIE Project Overview

- PETAL = Preliminary Eurocontrol Test of Air/Ground Data Link
 - ◆ PETAL IIE = Extension of PETAL Project to include ATN Operations
- Single Site: Maastricht Upper Area Control Centre
- Operational Services
 - ◆ Transfer of Voice Communication, Initial Contact, Altimeter Setting
 - ◆ Clearances and Requests: Flight Level, Route and Heading, Speed
 - "Passive" Requests (e.g. Preferred Level, Top of Descent)
- Uses VDL Mode 2 as Air/Ground Subnetwork
- American Airlines is the Launch Airline

www.eurocontrol.be/projects/eatchip/petal2/

PETAL IIE Overview

Status:

- MISSION COMPLETE
- PETAL II Link Bridge Project (P2L) to start in January 2002

FAA CPDLC Build 1 Overview

- Single Site: Miami Air Route Traffic Control Center
- Provides 4 Operational Services
 - ◆ Transfer of Voice Communication
 - ◆ Initial Contact
 - ♦ Altimeter Setting
 - ◆ Informational Free Text (menu capability built by supervisor inputs)
- Uses VDL Mode 2 as Air/Ground Subnetwork
- American Airlines is the Launch Airline

www.adl.tc.faa.gov

FAA CPDLC Build 1A Overview

- National Deployment: All Air Route Traffic Control Centers
- Provides Additional Operational Services
 - ◆ Larger Message Set accommodating assignment of Speeds, Headings, and Altitudes
 - ◆ Includes Route Clearance Function
 - Capability to accommodate Pilot-Initiated Altitude Requests
- Uses VDL Mode 2 as Air/Ground Subnetwork
- American Airlines is the Launch Airline
- Widespread Industry Participation is Anticipated

www.adl.tc.faa.gov

FAA CPDLC Build 1/1A Architecture

22

CPDLC/ATN Avionics: Functional Overview

ATNSI Airlines: Target Fleet Types

	American	Continental	Delta	Northwest	United	US Airways
Airbus Fleet Types	All	N/A	N/A	Some	All	All
Boeing Fleet Types	All	Most	Most	Some	Most	None
Regional Jet Fleet Types (affiliations)	All	Under Consideration	Under Consideration	None	Under Consideration	None

N/A = Not Applicable

Preliminary Airline Data. Subject to Revision.

Pre-Sep 11th Data.

Does not represent any actual or planned commitment by any airline to CPDLC equipage.

Avionics ATN Program Status

- Rockwell Collins
 - ◆ CPDLC/ATN-Capable CMU: Certified/Flew in PETAL IIE, Upgrade for CPDLC Build 1 Under Development
- Honeywell
 - ◆ CPDLC/ATN-Capable CMU: Under Development
- Thales Avionics (Sextant):
 - Software for CPDLC/ATN-Capable Airbus ATSU: Under Development

ATSU = Air Traffic Services Unit CMU = Communication Management Unit

ATNSI Projects

- Router Reference Implementation (RRI)
 - ◆ Avionics: ATN End System and/or Router
 - ◆ Ground Systems: ATN End System and/or Router
- Conformance Test Suite (CTS)
 - Verification Tool for Installed RRI (Avionics or Ground Systems) or other "equivalent" ATN Systems
 - ◆ Integrated into Common American European Reference ATN Facility (CAERAF) Project
 - CAERAF Project is co-sponsored by EUROCONTROL and the FAA Certification Office
 - Use of CAERAF is not limited to America/Europe, usage is intended for world-wide ATN verification

Next Steps

RTCA Free Flight Select Committee CPDLC Benefits Subgroup

Charter

- ◆ Update CPDLC Build 1A Business Case
- ◆ Recommend Incentives for Early Equipage
- ◆ Identify Impediments and Recommend Solutions
- Milestones

◆ Apr 2002: Final Report to RTCA Free Flight Steering Committee

Future Initiatives

FANS 1/A Accommodation

Future Initiatives

Security Initiatives

- Potential Initiatives
 - ◆ Analysis of Security Features present in existing CPDLC/ATN/VDL2 Architecture
 - ◆ Implementation of Security Features in upgraded CPDLC/ATN/VDL2 Architecture
 - ◆ Implementation of Security Features in new Applications and Services
- Issues
 - ◆ Standardization
 - Globalization

Conclusions

CPDLC/ATN Benefits

- ◆ Benefits can accrue Locally (dependent upon equipage)
- ◆ Regional Jet equipage is a significant Benefits component
- ◆ Delay in CPDLC implementation is an Opportunity Cost
- Post-Sep 11 Impacts
 - ◆ Near-Term Lower Traffic Densities
 - ◆ Older Aircraft are already being removed from the Fleet
 - ◆ Regional/Business operations are growing
- CPDLC/ATN Implementation Plans must stay in Place

Traffic and Voice Communication Congestion will Return - CPDLC IS NEEDED!!

Air/Ground ATN Implementation Status

ATN Seminar, Chiang Mai - 11/14 December 2001 -

Mike Murphy
ATN Systems, Inc. (ATNSI)
703-412-2900, Mike.Murphy@atnsi.com