PROJECT LOON

FLIGHT OPERATIONS INTRODUCTION ICAO Air Navigation Commission

Access is a huge problem

2 out of 3 people in the world are not connected to the internet

current solutions fail to effectively serve the needs of **remote and rural users.**

Reachable IP addresses observed in 2012 using ICMP Ping requests and Port Scans (Carna Botnet)

Why does access matter ?

Access to information and resources afforded by the Internet has a demonstrably positive impact on people's lives:

- Increase crop yields by 50%
- Lift **160 million people** out of poverty
- Small and Medium-Sized businesses on the internet are 10%
 more productive and grow up to twice as fast
- Access to relevant health information has the potential to save nearly 2.5 million lives

www.internet.org www.mckinsey.cor www.deloitte.com

Our solution -- Project Loon

A network of stratospheric balloons that connect directly to user's mobile device via LTE

coordinated as a mesh to ensure continuous coverage

and navigates by catching currents at different altitudes

Our goal is to build a fleet covering latitude bands Balloons tend to circumnavigate, forming bands around the world.

Since 2013: New Zealand, Brazil

1st user WiFi connection in New Zealand	First user LTE connection in rural Brazil		1 full day continuous test coverage in New Zealand				Maneuverability accuracy within 500m of targets			Switch to 700 MHz which quadruples coverage area	
JUN 2013	MAY 2014	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN 2015	FEB	MAR
First successful circumnavigation				L (2	aunch o capabilitie 20 ballooi	peration es scaled ns/day	to				

Loon balloon compared to other UFBs

Loon: general anatomy

DIMENSIONS

Envelope - ~10m tall/15m wide at float Flight System - ~45 kg carriage

POWER SYSTEM Solar panels, batteries

AVIONICS SYSTEM

Transponder/ADS-B out, GPS + sensor state information, transmitted via Iridium

ALTITUDE CONTROL

Pumps and valves that enable the balloon to maneuver with the winds

DATA NETWORKING

Balloon-to-balloon and balloon-toground communications

Apex Box (flight termination) Lift Gas Envelope Inner ballonet Pump valve ballast system Structural DGPS support Solar Panel **Batteries & Avionics** Antenna pointed towards

ground

NOT TO SCALE

Loon: Flight Systems

Flight termination

Safety features

WE COMPLY WITH OR EXCEED ALL HEAVY UFB REQUIREMENTS (ICAO Rules of the Air, Annex 2, Appendix 5)

VISIBILITY ELEMENTS

3

Triple Redundant Position Tracking
1. Transponder (ADS-B out with Mode A/C)
2. Web based GPS

Iridium triangulation

Radar Reflective Materials

Omnidirectional light beacon (> 5NM vis.)

REDUNDANT FLIGHT TERMINATION

Soft Terminate (~90 minute descent time) Slowly vents gas for gradual descent

Hard Terminate (~60 minute descent time) Quickly vents gas for fast descent

THE PAYLOAD AND BALLOON STAY AS

Safety tether

LED Strobe light

Parachute

Managing the fleet : Mission Control Actively monitoring and controlling a dynamic system

Flight operations team : Highly trained flight engineers on duty 24/7. Command and control : For all flights possible with high frequency telemetry and system data.

Estimated Life Expectancy: Through multiple sensors, our flight systems constantly check indicators of balloon life (e.g., temperature and pressure).

Mission Control : In-flight tracking We partner closely with Civil Aviation / Air Traffic Services globally

MISSION CONTROL TRACKING Flight Engineers monitor flights at all times.

TRANSPONDERS: ADS-B Out with Mode

C

WEB BASED TRACKING

Basic flight information is shared with aviation agencies worldwide through aerostar-faa.com website.

MANEUVERING THE WINDS

We use highly sophisticated data models and control algorithms to accurately steer Loon Balloons with the wind

We predict balloon trajectories with wind data + altitude models

We plan different trajectories based on our control capacity

Pumps and valves enable the balloon to change altitudes

We catch currents at different altitudes in real-time to navigate

Constant improvements to launch procedures

DRAFT - Strictly Commercia Confidence

Transiting FIRs

Example operating procedure for coordination with ATCs

72 HOURS PRIOR	Flight plan to ATC in agreed upon format e.g. phone / email and then updated every 12 hours					
	 Flight Identifier Current Position Approximate Entry Time Approximate Entry Position Balloon / payload description 					
60 MINUTES PRIOR	 50 km (approximately 60 minutes) prior to entry Call affected FIR / ARTCC if they desire Notify of any changes in flight plan Provide additional info upon request 					

Transit occurs above 60,000 ft. In cases that we do transit below FL600, we coordinate with ATC.

Able to tailor communications to ATC's requirements

Separation standards used currently

Often no lateral separation standards for flights above 60,000 ft Below 60,000 ft : varies by country and airspace

Wide Spectrum of Separation Requirements Used Today

The journey moving forward

FOCUS

NEXT THREE MONTHS

THREE TO SIX MONTHS

Mass production of balloons.

• Polish operational procedures.

• Telecommunications tests with local partners.

SIX TO NINE+ MONTHS

• Refine automated controls.

Scaled operations.

Equatorial
20° N / S

Formalizing relationships with a focus on safe operations

US

- Refining balloon / payload.
- Continued improvement to automated steering of balloons.

LOCALE

- Continental US
- Some international

Equatorial
Launched from US

BALLOON-POWERED INTERNET

Google