

ICAO Air Navigation Commission

## Access is a huge problem

2 out of 3 people in the world are not connected to the internet
$>10000000$
1000000
00000
10000 1000 100
current solutions fail to effectively serve the needs of remote and rural users.

## Why does access matter?

Access to information and resources afforded by the Internet has a demonstrably positive impact on people's lives:

- Increase crop yields by 50\%
- Lift 160 million people out of poverty
- Small and Medium-Sized businesses on the internet are 10\% more productive and grow up to twice as fast
- Access to relevant health information has the potential to save nearly 2.5 million lives



## Our solution -- Project Loon

A network of stratospheric balloons that connect directly to user's mobile device via LTE

coordinated as a mesh to ensure continuous coverage
and navigates by catching currents at different altitudes


Our goal is to build a fleet covering latitude bands
Bailoons tend to circumnavigate, forming bands around the world.

## NEXT PHASE OF OPERATIONS

## Since 2013: New Zealand, Brazil



1st user WiFi connection in New Zealand

First user LTE connection in rural Brazil

1 full day continuous test coverage in New Zealand

Maneuverability accuracy within 500 m of targets

Switch to 700 MHz which quadruples coverage area

| JUN | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | 2014 |  |  |  |  |  |  |  | 2015 |  |  |
| ccessful Launch operation |  |  |  |  |  |  |  |  |  |  |  |
| circumnavigation |  |  |  |  | capabilities scaled to |  |  |  |  |  |  |
| circummavigation 20 balloons/day |  |  |  |  |  |  |  |  |  |  |  |

## Loon balloon compared to other UFBs



## Loon: general anatomy

## DIMENSIONS

Envelope - ~10m tall/15m wide at float Flight System -~45 kg carriage

## POWER SYSTEM

Solar panels, batteries

## AVIONICS SYSTEM

Transponder/ADS-B out, GPS + sensor state information, transmitted via Iridium

## ALTITUDE CONTROL

Pumps and valves that enable the balloon to maneuver with the winds

DATA NETWORKING
Balloon-to-balloon and balloon-toground communications


## Loon: Flight Systems



Flight termination

## Safety features

## WE COMPLY WITH OR EXCEED ALL HEAVY UFB REQUIREMENTS (ICAO Rules of the Air, Annex 2, Appendix 5)

VISIBILITY ELEMENTS
Triple Redundant Position Tracking

1. Transponder (ADS-B out with Mode A/C)
2. Web based GPS

3 Iridium triangulation
Radar Reflective Materials
Omnidirectional light beacon ( > 5NM vis. )
REDUNDANT FLIGHT TERMINATION
Soft Terminate ( $\sim 90$ minute descent time) Slowly vents gas for gradual descent

Hard Terminate ( $\sim 60$ minute descent time ) Quickly vents gas for fast descent


THE PAYLOAD AND BALLOON STAY AS ONF

## Managing the fleet : Mission Control

Actively monitoring and controlling a dynamic system

Flight operations team : Highly trained flight engineers on duty 24/7.
Command and control : For all flights possible with high frequency telemetry and system data.

Estimated Life Expectancy : Through multiple sensors, our flight systems constantly check indicators of balloon life (e.g., temperature and pressure).


## Mission Control : In-flight tracking

We partner closely with Civil Aviation / Air Traffic Services globally


## MISSION CONTROL TRACKING

Flight Engineers monitor flights at all times.

TRANSPONDERS: ADS-B Out with Mode C

## WEB BASED TRACKING

Basic flight information is shared with aviation agencies worldwide through aerostar-faa.com website.

## MANEUVERING THE WINDS

We use highly sophisticated data models and control algorithms to accurately steer Loon Balloons with the wind


We predict balloon trajectories with wind data + altitude models


Pumps and valves enable the balloon to change altitudes


We plan different trajectories based on our control capacity


We catch currents at different altitudes in real-time to navigate

## Constant improvements to launch procedures



## Transiting FIRs

Example operating procedure for coordination with ATCs

72 HOURS Flight plan to ATC in agreed upon format e.g. phone / email PRIOR

60 MINUTES PRIOR 50 km ( approximately 60 minutes ) prior to entry
1 Call affected FIR / ARTCC if they desire
2 Notify of any changes in flight plan
3 Provide additional info upon request
Transit occurs above 60,000 ft. In cases that we do transit below FL600, we coordinate with ATC.


## Separation standards used currently

Often no lateral separation standards for flights above 60,000 ft Below 60,000 ft : varies by country and airspace


## Wide Spectrum of Separation Requirements Used Today

## The journey moving forward

MONTHS<br>THREE TO SIX MONTHS

FOCUS
NEXT THREE •Refining balloon / payload.

- Continued improvement to automated steering of balloons.


## LOCALE

- Continental US
- Some international
- Mass production of balloons.
- Polish operational procedures.
- Telecommunications tests with local partners.
- Equatorial
- Launched from US


## SIX TO NINE+

 MONTHS- Refine automated controls.
- Scaled operations.
- Equatorial
- $20^{\circ} \mathrm{N} / \mathrm{S}$

Formalizing relationships with a focus on safe operations


## BALICOWPOWERED NTEREI

## Google

