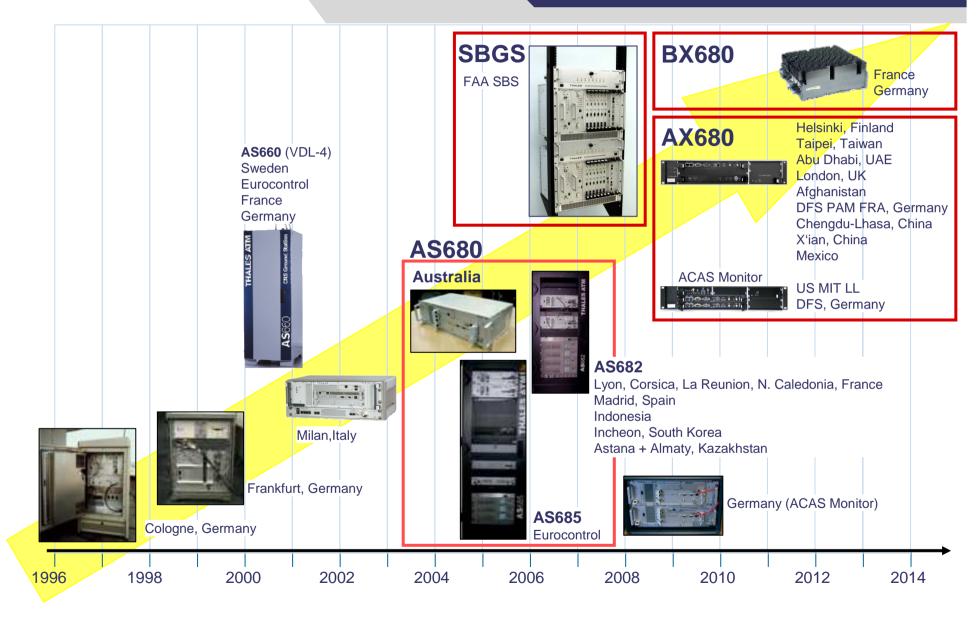


SP/8

Update on ADS-B Thales Perspective

Holger Neufeldt

Product Manager ADS-B/MLAT Systems


Thales Air Systems & Electron Devices

Germany

Security and mobility in a networked world.

Thales has a long History in ADS-B

Typical ADS-B Equipment

AX680

Single/dual channel/link ground station (indoor version)

- High Performance Receiver
- SWAL3 compliant Software
- Fully DO260B compliant
- Autonomous ADS- B Processing
- WAM Processing

Rugged single channel/link ground station (outdoor version)

FAA SBSS Radio

FAA SBS Site

Dual redundant, quad channel, dual link SBS ground station THALES

ADS-B/MLAT/WAM Surveillance Product Overview - HN 04/2013

Ground Station Configurations

AX680 series

- 19" form factor indoor equipment
- Hot-swap elements, low prev. maintenance
 - Redundant fans
 - Dual power supply
 - Ethernet Asterix interface
 - Integrated GPS, Site Monitor

Integrated Receiver/Signal Processing Board Digital, software-defined radio Sensitivity -91 dBm Mode A/C/S, 1090 ES ADS-B Decoding Compliant to DO260/A/B, exceeding class A3

BX680 series

- Rugged outdoor equipment:
 - IP66: no dust/water ingress, salt spray tested
 - Passive cooling, no fans
 - -40° to +70°C (incl. 15°C solar load)
- Ethernet + PoE and Fibre Optic Interfaces
- Integrated GPS, Site Monitor, UPS (external Battery Pack)

ADS-B/MLAT/WAM Surveillance Product Overview - HN 04/2013

Life Cycle Costs for a System.

- Site Rental Costs, incl. ground station footprint
- Communication System Costs (acquisition versus leased lines)
- Power Consumption
- Trips for Maintenance due to routine or failures

Requirements:

- As much as possible a ground station design should minimize the number of trips to the actual site.
- A ground station should have low power consumption and optimise communication bandwidth requirements
- Should be able to handle interference, overlapping..
 - Interference is a major threat to robust ADS-B performance and achieving performance at range, 250+ Nautical miles.

Entrance Barriers for ADS-B Introduction

Equipage levels

Mitigation:

oprovide benefits for equipped aircraft, or

oissue mandates, e.g. as in AUS, EU, US

Integrity / security

Mitigation:

• add integrity layers to ground system, as proposed and implemented in SESAR

Thales Activities to enhance ADS-B Data Integrity

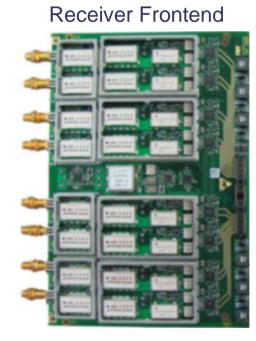
SESAR WP 15.4.5

Implementing means

- on ground station level (decentralized), and
- in a centralized ADS-B Validation Server

- Defined new Asterix cat 21 edition 2.77 to include validation results (was Basis for ed. 2.1)
- Simple data consistency checks
 - Velocity vs position change
 - ADS-B transponder also provides other Mode S signals and/or replies
- Additional Measurements
 - TOA validation, DTOA validation, WAM integration
 - Angle of Arrival Validation
 - Ranging

Further Roadmap


Integrity Overlay based on 1090 MHz D8PSK Phase Overlay (long term)

Prototype

- 8 RX channels, integrated into BX680 outdoor case
- Synchronous multichannel signal processing
- Accuracy ~0.9° within 120° azimuth sector, plan to increase sector
- Integrated into AX680 (19" indoor) and BX680 (outdoor) configurations

Antenna and Ground Station Trials at Frankfurt Airport

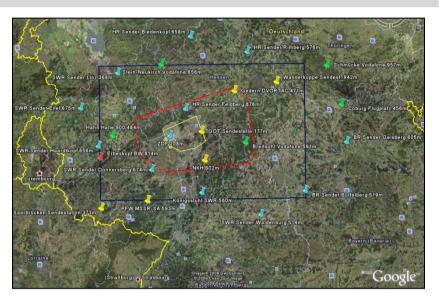
Another approach for transition to ADS-B...

Precision Approach Monitor Frankfurt – PAMFRA

Customer

- DFS
- Main Drivers:
 - High update rate in final approach
 - High accuracy
 - Transition technology to ASDS-B
 - Locations of DFS

DFS Deutsche Flugsicherung


Public-sector sites

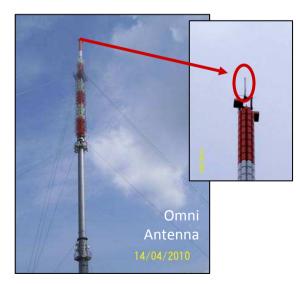
Privately-owned sites

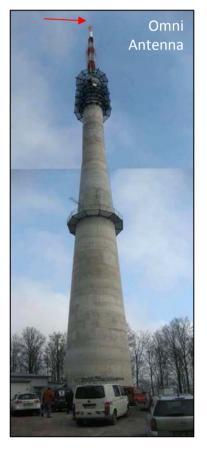
Locations the of Federal Armed Forces (Bundeswehr)

Main Task

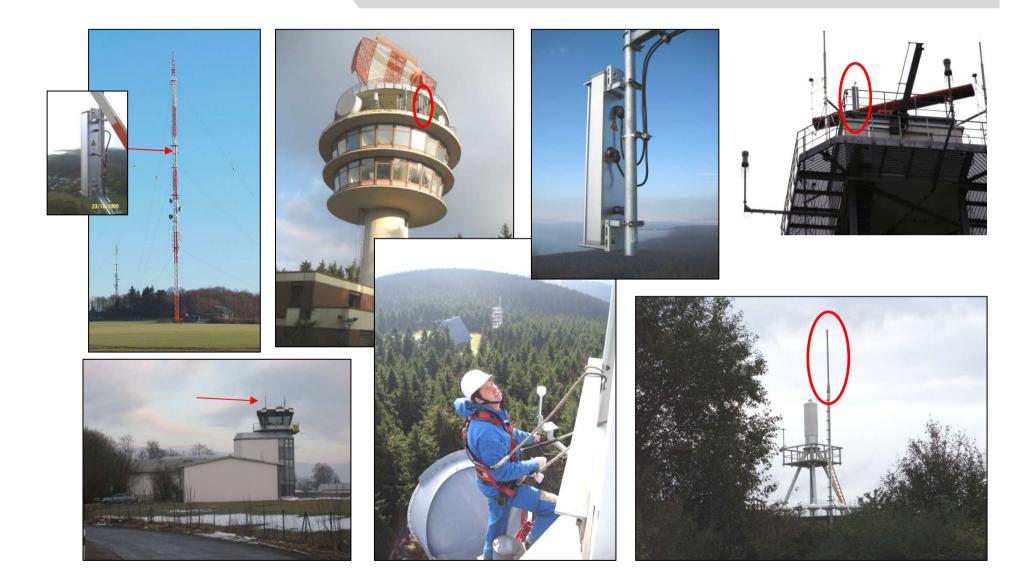
- Provide Multilateration Surveillance within 128x80 NM coverage region around Frankfurt International Airport
- Focus on closely parallel approaches
- Primary means of Surveillance in approach sectors

Main Parameters

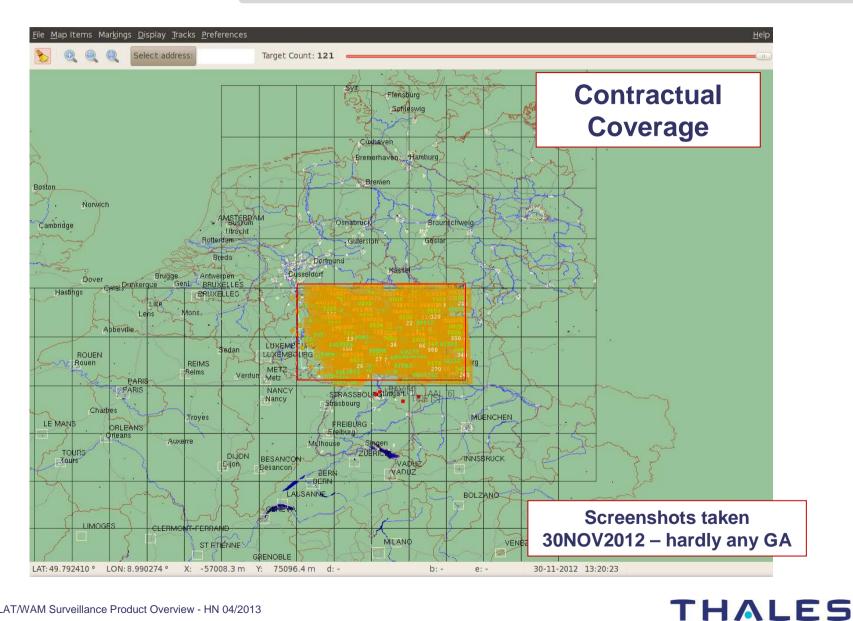

- Output Probability of Detection: PD ≥ 97%
- Up to 500 targets Mode A/C & S in coverage at any one time (plus up to 500 targets outside coverage to be detected to discard)
- Reporting interval: 1 second (Radar: 4.8s, 10s...)
- Direct plot output (no coasting, extrapolation or smoothing)
- Horizontal Position Accuracy: HPA ≤ 50m RMS (150 m for TMA in ED-142)
- Probability of Code Detection: PCD ≥ 97% (Mode A), ≥ 96% (Mode C)
- Altitude Timeout 1s
- Dual synchronisation required (GPS and RF Time Beacon)
- N-1 redundancy


Main constraints

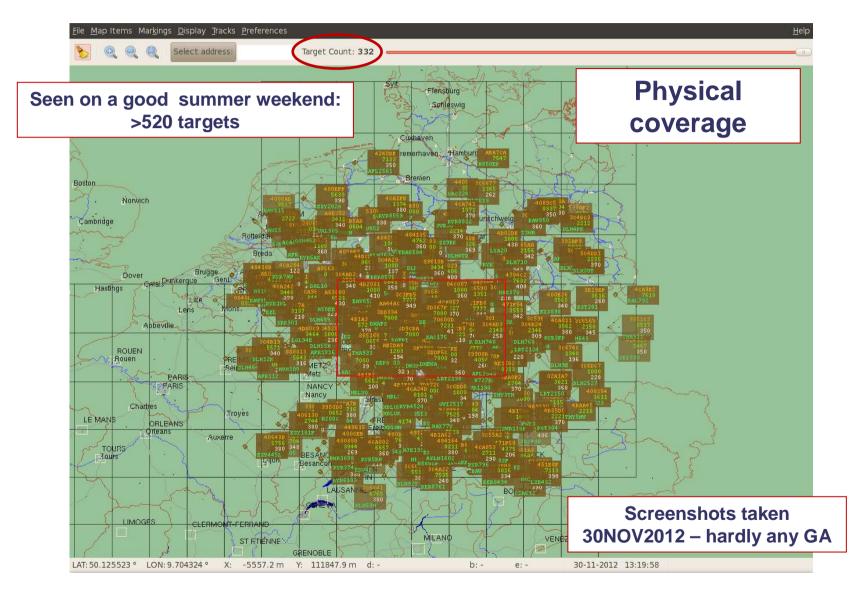
- High Radio Frequency environment (most loaded 1090 MHz environment)
- High traffic load (>500 WAM targets seen in physical coverage)
- Difficult traffic mix (gliders, ultralights, helicopters, military, air transport,...)

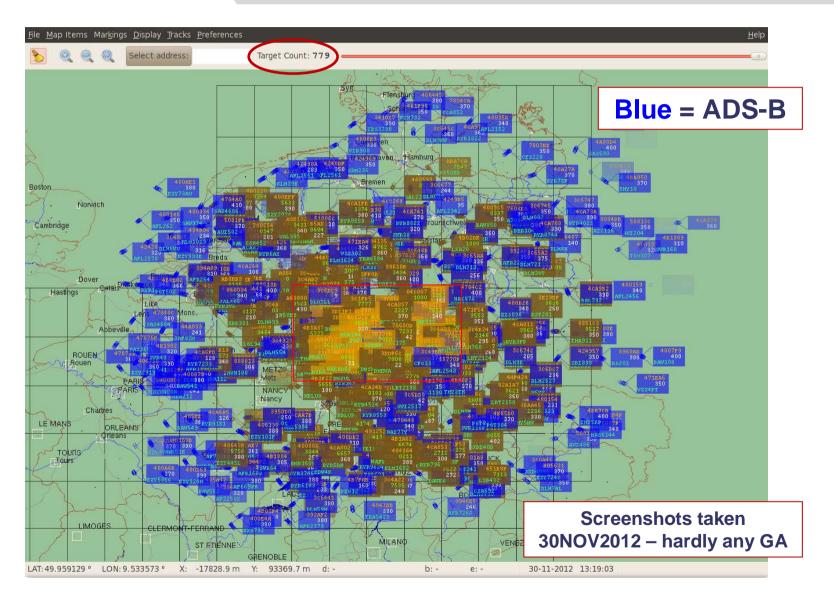

- DFS concluded a comprehensive initial site survey presenting a selection of more than 80 sites for tenderers to choose from
- Thales identified 34 sites (12 of these for airport GND alone) and their respective role
 - Main driver: low level WAM visibility, rather than power budget
 - Re-use existing sites as far as practial
 - Requires system adaptability: antenna types, EMC, communication, packaging, lightning protection, etc.
 - Confirmed findings in final site survey

Typical PAM FRA Ground Station Sites



WAM Sensor Equipment




WAM Data used by DFS

WAM Data seen by the System

All Data seen by the System

- Operational Cutover on 09 April 2013
- PAM-FRA WAM sensor (PAF) is used as the leading surveillance system for Frankfurt APP
- Position accuracy equal or higher than ASR.
- Target update rate increased from 4.8 seconds to 1.0 second.
- Increased level of Safety earlier detection of
 - altitude, direction and speed changes,
 - potential conflicts and unauthorized entries into protected airspace

• PAM-FRA Sensor treated like an ASR without primary component.

- Only cooperative targets presented with one second update rate.
- Primary (non cooperative) targets and targets outside the PAM-FRA coverage need to be detected by conventional, rotating radars. Presented with lower update rate depending on the turn rate of the used radar.

Next steps:

Extend coverage and assess ADS-B Performance

ADS-B/MLAT/WAM Surveillance Product Overview - HN 04/2013

PFW LUD NKH GOS Paf FFS FFI NKH 18 14

ADS-B is the Target

Best performance of all surveillance technologies

• Lowest cost of all surveillance technologies

Heard from DFS: **"ADS-B, when it works, is perfect" – "So let's make it work"**

19 /

ADS-B/MLAT/WAM Surveillance Product Overview - HN 04/2013

The End Thank you very much! Happy to answer Questions

> Holger Neufeldt Phone: + 49 711 86032 230 Email: holger.neufeldt@thalesgroup.com

Security and mobility in a networked world.

